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a b s t r a c t

Mobile app recommendation has been an effective solution to overcoming the information overload
in mobile app markets. Recent studies have demonstrated the power of neural network in recommen-
dation tasks which is however rarely exploited for mobile apps. As one of the development of neural
network, attention-based models have shown promising results for recommendation because of its
capability of filtering out uninformative features from raw inputs. In this paper, to effectively predict
users’ preferences for apps, we propose a hierarchical neural network model called MV-AFM for app
recommendation which models the interactions of features from different views (view interactions for
short) through the attention mechanism. Specifically, the novelty of MV-AFM is the introduction of
view segmentation for feature interactions and the construction of two level attention networks: the
feature-level attention, starting from the feature embeddings within each view, which intends to select
the representative features for the view, and the view-level attention, which learns the importance of
interactions between any two views. Extensive experiments on two real-world mobile app datasets
demonstrate the effectiveness of MV-AFM.

© 2019 Published by Elsevier B.V.

1. Introduction

With the development of smart phone devices, the app stores
are experiencing tremendous growth in the numbers of apps and
users. Taking the two most representative app stores, Google Play
and Apple’s App Store, as examples, the number of available apps
in the former reached 2.7 million in Feb. 2017.1 and the latter
has accumulated about 2.2 million downloadable apps until Jan.
2017.2 The vast amount of apps leads to information load, making
it difficult for users to find required apps.

Recommender system is a well-known solution for alleviating
the information overload problem and assisting users in locating
the target items. Recently, many recommendation algorithms
for mobile apps have been proposed. Most of these methods
can be divided into two types, collaborative filtering (CF) based
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1 http://en.wikipedia.org/wiki/Google_Play
2 http://en.wikipedia.org/wiki/App_Store_(iOS)

approach [1,2] and feature-based approach [3–6]. CF-based ap-
proach merely depends on the historical interactions between
users and apps without the consideration of additional auxil-
iary information. Feature-based approach exploits the app side
information (i.e., privacy information, description) as features to
facilitate the prediction of users’ preferences. However, all these
methods do not consider the complex interactions between users
and app features.

Factorization Machines (FM) [7] is one of the most effective
feature-based recommendation models that can incorporate any
side features to improve the performance of rating prediction
task. FM model makes it possible to integrate any auxiliary in-
formation that can be encoded as a real-valued feature vector
and model feature interactions. Table 1 shows several examples
of app rating records. Each records involves a user, an app, and
app features, which can be seen as heterogeneous data obtained
in multiple views. Each view is represented by a set of features.
The permission view contains a set of features like precise location,
take pictures & videos, and the text description is a view including
a set of word features. Different feature views can provide com-
plementary information. For example, according to the category
view, Instagram can be recognized as a tool for social interaction.
Feature take pictures & videos in the permission view and the
words in the text view can provide further information indicating
its function of photo sharing.
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0950-7051/© 2019 Published by Elsevier B.V.
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Table 1
Feature examples of app rating records.
user_id app_id Category Description text

SenTra IV com.photolab.photoeditor Photography photo editor, stickers, skin, . . .
C Barauskas gov.caltrans.quickmap Maps&Navigation location, real-time, traffic, . . .
Nizami Safi com.instagram.android Social share, friends, post photos, . . .
Lammie New com.topfreegame.sudoku Puzzle sudoku, puzzle game, brain, . . .

user_id app_id Permission Rating
Take pictures & videos Precise location Receive data from Internet ...

SenTra IV com.photolab.photoeditor 1 0 0 ... 3
C Barauskas gov.caltrans.quickmap 0 1 0 ... 4
Nizami Safi com.instagram.android 1 1 0 ... 5
Lammie New com.topfreegame.sudoku 0 0 1 ... 5

This work aims to make accurate app rating prediction by
capturing the interaction information among multi-view features
based on FM model. Therefore, we propose to model the feature
interactions considering view segmentation with deep neural
network which has the potential to learn sophisticated feature
interactions. Several FM-based neural network models have been
proposed in recent years, e.g., DeepFM [8] and AFM [9], but
most of them model pairwise interactions between all features
without considering view segmentation. View segmentation here
means classifying features into different views by feature types.
With view segmentation, we can model the interactions of fea-
tures from different views and neglect the feature interactions
within the same view, which makes it possible to avoid the
redundant correlations between features within the same view.
For example, the interactions of features in permission view are
unworthy as they cannot further provide insight information. The
feature interactions within description view are easy to produce
redundant information since the text features are arbitrary and
sophisticated. But when model the interactions between features
from permission and description view, we cannot only obtain the
users’ preference on app function and privacy information simul-
taneously but also judge the rationality of permission request
related to the app function.

As Table 1 shows, a feature view can be represented by a
set of features (e.g., permission and description view). However,
there exists a case that some features in a view are insignifi-
cant. Taking the permission view of apps as an example, some
permissions have minor influence on the view representation
as they are commonly found in most apps, such as full network
access, view Wi-Fi connections. Moreover, the features in a view
contain complex information while different users may focus on
different features in the view of the same app. To accurately
represent a specific view, we should assign different weights on
the set of features. It is also worth noting that a multi-view
FM model treats all the view interactions equally. However in
reality, it is common that not all feature views make the same
contribution to the prediction of users’ preferences for apps. For
example, the determining factors for users’ app downloads can
be quite different from user to user. Some users may think more
of the content, while others pay more attention to the privacy
information. With these in mind, we consider to construct a
hierarchical network that consists feature-level and view level
attention. The key idea of attention is to assign attentive weights
for a set of features: higher (lower) weights indicate that the
corresponding features are more (less) informative. Feature-level
attention is able to assign appropriate attentions for features to
generate accurate view representations and view-level attention
can provide different attentions to discriminate the importance
of different view interactions.

In this paper, we propose a Multi-View Attentional
Factorization Machines (MV-AFM) for app recommendation. MV-
AFM is a neural network structured with hierarchical attention
sub-networks. Specifically, a feature-level attention is exploited

on the embedding vectors of features in each view, which aims
at selecting the representative features for the view. Based on
weighted embedding vectors, MV-AFM performs a view-level
attention to differentiate the importance of different view inter-
actions. To our best knowledge, this is the first work considering
the differentiation of views with attention mechanism.

The main contributions of this paper are summarized as:

• We propose a novel method called MV-AFM to facilitate
app recommendation by modeling feature interactions with
view segmentation under neural network framework and
constructing hierarchical attention sub-networks.
• Through the two attention sub-networks, i.e., feature-level

and view-level, MV-AFM simultaneously learns the impor-
tance of features in the same view and the significance of
different view interactions.
• Through extensive experiments conducted on two real-

world datasets, we show that MV-AFM consistently outper-
forms several state-of-the-art prediction models.

The remainder of this paper is structured as follows. Section 2
presents the preliminaries about FM model and multi-view pre-
diction. The proposed MV-AFM model is described in Section 3.
Section 4 reports the experimental results. Section 5 presents the
related work and we draw the conclusion in Section 6.

2. Preliminaries

In this section, we first review the factorization machines and
briefly introduce the problem of multi-view prediction.

2.1. Factorization machines

As one of the state-of-the-art predictors, factorization ma-
chines (FM) models all possible interactions between values in
the feature vector using factorized interactions rather than full
parametrized ones [7]. Given a real-valued feature vector x ∈ Rn

where n denotes the number of features, the 2-way FM model is
defined as follows:

ŷ(x) = w0 +

n∑
i=1

wixi +
n∑

i=1

n∑
j=i+1

⟨
vi, vj

⟩
xixj, (1)

where w0 ∈ R is the global bias, wi denotes the ith element of
w ∈ Rn and models the weight of the ith feature. The interac-
tion between the ith and jth features is modeled by

⟨
vi, vj

⟩
=∑k

f=1 vi,f · vj,f , where vi ∈ Rk denotes the latent vector for the
ith feature and k denotes the dimensionality of latent vector.

2.2. Multi-view prediction

The most general prediction task is to learn a function y :
Rn
→ T from a real-valued feature vector x ∈ Rn to a target
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domain T (e.g. T = R for regression). In multi-view settings, it
is assumed that there is a training set with N labeled instances
represented from m views: D = {(xi, yi)|i = 1, . . . ,N}, where
xTi =

(
x(1)

T

i , . . . , x(m)T
i

)
. Here x(p)i ∈ RIp is the pth view in

the feature vector, Ip is the dimensionality of the pth view and∑m
p=1 Ip = n.
It can be found that the pairwise interactions between all

features in FM model does not consider the view segmentation. In
the multi-view setting, the neglect of view segmentation would
lead redundant correlations between features within the same
view [10]. Therefore, in this work, we consider the multi-view
variation of FM model which is defined as follows:

ŷ(x) = w0 +

m∑
p=1

Ip∑
ip=1

w
(p)
ip x(p)ip +

I1∑
i1=1

I2∑
i2=1

⟨
v(1)i1

, v(2)i2

⟩
x(1)i1

x(2)i2

+ · · · +

Im−1∑
im−1=1

Im∑
im=1

⟨
v(m−1)im−1

, v(m)
im

⟩
x(m−1)im−1

x(m)
im ,

(2)

where v(p)ip denotes the latent vector for the ip-th feature in the
pth view.

3. Multi-View Attentional Factorization Machines

3.1. General framework

MV-AFM is a hierarchical neural network that models multi-
view feature interactions with feature-level and view-level atten-
tions. Fig. 1 illustrates the architecture of the proposed MV-AFM
model. We omit the linear regression part in the figure for clarity.
MV-AFM starts from a sparse vector of input features with view
segmentation. For each view, the embedding layer embeds each
non-zero feature into a dense vector. It is worth noting that
the embedding layer can model different types of features such
as categorical and textual features, which means the proposed
model is able to process these features together. The feature-
level attention assign different attention values to the feature
embedding vectors in each view to obtain a set of weighted
embeddings. The next layer models the interactions between the
weighted embeddings of features from different views to get
the pair-wise interactions between views. View-level attention is
applied to generate the attention values for different pair-wise
view interactions to obtain the weighted interactions which can
be used for the final prediction.

As the main contributions of this work, the embedding layer,
multi-view pair-wise interaction layer, feature-level and view-
level attention mechanism will be detailedly introduced as fol-
lows.

Embedding Layer. Each input vector (i.e., rating record) con-
sists of features from multiple views (e.g., user id, genre, per-
mission, and description) which need to be embedded to low-
dimensional, dense real-value representations before being fed
into the main module. The proposed embedding layer is able to
turn the indexes into dense vectors of fixed size to transform
the features to embedding vectors. The embedding layer can be
simply regarded as a lookup table that read non-zero a feature as
follows:

LT (i) = Wi,

where W ∈ Rk×n is a matrix of parameters to be learned, Wi ∈ Rk

is the ith column of W, and i is the index of the non-zero feature.
Formally, let v(p)ip ∈ Rk be the embedding vector the ip-th feature
in the pth view. It is worth pointing out that (1) while the length
of input vectors in different views can be different, the output
embeddings are of the same size (k); (2) the embedding vector

v(p)ip plays the same role as the latent feature vector in FM and
can be used to compress the input vector.

Pair-Wise Interactions between Views. Inspired by the pair-
wise interaction layer proposed in [9], we propose a multi-view
pair-wise interaction layer which models interactions between
different views. It expands m views to m(m − 1)/2 interacted
views, where each interacted view is generated by the summation
of the element-wise products of embedding vectors from two
distinct views. Suppose the index set of non-zero features in
the pth view feature vector x(p) is X (p) and the output of the
embedding layer for the pth view is E (p)

= {v(p)ip x(p)ip }ip∈X (p) , then
we can form the output of the multi-view pair-wise interaction
layer as a set of vectors:

fVI
(
E
)
=

{ Ip∑
ip=1

Iq∑
iq=1

(v(p)ip ∗ v
(q)
iq )x(p)ip x(q)iq

}
(p,q)∈Rv

,

where ∗ denotes the Hadamard (element-wise) product, E ={
(E (p), E (q))|(p, q) ∈ Rv

}
denotes the set of input pairs, and Rv =

{(p, q)|p, q = 1, . . . ,m, q > p} for short. Based on the newly
proposed interaction layer, the multi-view variation of FM model
can be represented under the neural network architecture. The
final prediction result can be estimated by compressing fVI with
a sum pooling and using a fully connected layer as follows:

ŷ = pT
∑

(p,q)∈Rv

( Ip∑
ip=1

Iq∑
iq=1

(v(p)ip ∗ v
(q)
iq )x(p)ip x(q)iq

)
+ b, (3)

where p ∈ Rk and b ∈ R respectively denote the weights and bias
for the final prediction layer. Note that the multi-view FM model
can be exactly recovered by fixing p to 1 and b to 0.

Feature-Level Attention. The multi-view pair-wise interac-
tion layer introduced above models the features in a specific
view with the same weights. However, not all features con-
tribute equally to the representation of the view. Those irrelevant
features can be considered as noises which would bring poor
performance. The goal of feature-level attention is to assign fea-
tures in the same view with attentive weights to represent the
view. With the weighted feature vectors, the output of multi-view
pair-wise interaction layer can be improved to:

f ′VI
(
E
)
=

{ Ip∑
ip=1

Iq∑
iq=1

(βip,pv
(p)
ip ∗ βiq,qv

(q)
iq )x(p)ip x(q)iq

}
(p,q)∈Rv

, (4)

where βip,p can be interpreted as the importance of feature ip in
view p. There exist several effective ways to obtain the atten-
tion score and we introduce the multi-layer perceptron (MLP) to
compute it as:

β ′ip,p = hT
f relu

(
Wf v

(p)
ip + bf

)
βip,p =

exp(β ′ip,p)∑Ip
ip=1 exp(β

′

ip,p)
,

(5)

where Wf ∈ Rd×k, bf ∈ Rd, and hf ∈ Rd are parameters of
the feature-level attention network. And d denotes the hidden
layer size of the feature-level attention network. The attention
scores are normalized through the softmax function. Note that
for different feature views, we can choose different methods to
get the attention scores.

View-Level Attention. Assigning a uniform weight of 1 for
all the view interactions in multi-view FM model may limit its
generalization performance since different users may focus on
features of different views. To address this problem, based on
the attentional features in each view, we propose to implement
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Fig. 1. The neural network architecture of the proposed MV-AFM model.

attention mechanism on view interactions (i.e., view-level atten-
tion) by performing a weighted summation on the interacted
views:

fv_att
(
f ′VI

(
E
))
=

∑
(p,q)∈Rv

αp,q
( Ip∑
ip=1

Iq∑
iq=1

(βip,pv
(p)
ip ∗βiq,qv

(q)
iq )x(p)ip x(q)iq

)
, (6)

where αp,q is the attention score that can be interpreted as the
contribution made by the interaction between view p and q. We
use the structure like feature-level attention network to estimate
the attention score and take the summation of the interacted
vectors from two views as input:

α′p,q = hT
vrelu

(
Wv

Ip∑
ip=1

Iq∑
iq=1

(βip,pv
(p)
ip ∗ βiq,qv

(q)
iq )x(p)ip x(q)iq + bv

)
αp,q =

exp(α′p,q)∑
(p,q)∈Rv

exp(α′p,q)
,

(7)

where Wv ∈ Rt×k, bv ∈ Rt , and hv ∈ Rt are parameters of the
view-level attention network. Here t denotes the hidden layer
size of the attention network. We get the final view-level weights
by normalizing the attention scores α′p,q through the softmax
function.

3.2. Rating prediction for apps

The output of the sum pooling layer with feature-level and
view-level attentions is a k dimensional vector, which compresses
all view interactions in the embedding space with distinct at-
tentive scores. Given a feature vector x with multiple views that
contains user and mobile app information, the final rating could
be predicted by:

ŷ(x)MV−AFM = w0 +

m∑
p=1

Ip∑
ip=1

w
(p)
ip x(p)ip + pTfv_att

(
f ′VI

(
E
))

= w0 +

m∑
p=1

Ip∑
ip=1

w
(p)
ip x(p)ip

+ pT
∑

(p,q)∈Rv

αp,q
( Ip∑
ip=1

Iq∑
iq=1

(βip,pv
(p)
ip ∗ βiq,qv

(q)
iq )x(p)ip x(q)iq

)
,

(8)

where αp,q and βip,p are defined in Eqs. (7) and (5), respectively.
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3.3. Learning

To estimate model parameters of MV-AFM, we use the squared
loss as objective function:

L =
∑

(x,y)∈D

(ŷ(x)MV−AFM − y)2, (9)

where D denotes the training set and y is the target value.
The regularization terms are optional and omitted here as some
techniques such as dropout can effectively avoid overfitting in
neural network modeling.

To optimize the objective function, we employ stochastic gra-
dient descent (SGD) to learn model parameters Θ = {{w

(p)
ip ,

v(p)ip },Wf ,Wv, bf , bv,hf ,hv, p}. Algorithm 1 shows detailed learn-
ing process of MV-AFM, which can be divided into three steps:
(1) Line 6 to Line 10 is the process of computing feature-level
attention values and weighted feature embeddings within each
view; (2) Line 11 to Line 14 is the process of computing view-level
attention values and final rating prediction; (3) the optimizer
runs back propagation with respect to Eq. (9) (see [11]). Note
that Line 17 are the gradients of the model parameters updated
using chain rules. To leverage the vectorization and parallelism
speedup of modern computing platforms, we adopt mini-batch
SGD that randomly samples a batch of training instances and
updates parameters based on the batch.

Time Complexity. We analyze the time complexity of four
main parts in whole neural network. For each example, the time
complexity of the embedding layer (line 7) is O(n2k), and the
pair-wise view interaction layer (line 10) requires O(n2k). The
feature-level (line 8) and view-level (line 12) attention layers
respectively require O(n+mdk) and O(m2

+ tk). The back prop-
agation has the same complexity as the forward evaluation. As
the number of view m usually is much smaller than the number
of feature n, we omit m2. When we set d = t , the total time
complexity for Algorithm 1 is O((n2

+md)k).
Space Complexity. The space complexity of the neural net-

work is related to the number of model parameters. The embed-
ding layer requires O(nk) and the linear regression part requires
O(n). The space complexity of feature-level and view-level atten-
tion layer are O(d2) and O(t2), respectively. When we set d = t ,
the total space complexity of the proposed model is O(nk + d2).
It can be found that the most parameters need to be learned are
in the embedding layer.

4. Experiments

4.1. Data and setup

To evaluate the performance of our MV-AFM model, we con-
duct extensive experiments on two datasets, Google Play and
Apple’s App Store.

• Google Play: We crawled app’s meta data (e.g., name, cate-
gory, permissions, description) and user review ratings from
its description page in Google Play. After filtering users
and apps with less than 5 rating records, we obtain 8,875
users and 6,756 apps with 84,075 rating records. Each rat-
ing record is represented in four views, i.e., user, category,
permission, and description text. The user view consists of
binary feature vectors for user ids which means there is
only one non-zero feature in the user view for each rating
record, the same for the category view. The permission view
is represented by a vector of permission indexes, and the
text view is represented by the first 100 words indexes.

Algorithm 1: Learning Multi-View Attentional Factorization
Machines
Input: Training data D, embedding dimension k, attention

dimension d and t , and learning rate η

Output: Model parameters Θ

1 Initialize Θ with xavier [11].
2 repeat
3 //sample a mini-batch of size Nb
4 Dbatch ← sample(D,Nb)
5 for xi ∈ Dbatch do
6 for p = 1 : m do
7 Get embedding vector {v(p)ip }ip∈Xp

8 Compute {βip,p}ip∈Ip according to Eq. (5)
9 end

10 Compute f ′VI
(
E
)
according to Eq. (4)

11 for each view pair (p, q) do
12 Compute αp,q according to Eq. (7)
13 end
14 Compute ŷ(xi) according to Eq. (8)
15 end
16 for θ ∈ Θ do
17 Update θ ← θ − η · 1

Nb

∑Nb
i=1 2(ŷ(xi)− y) ∂ ŷ(xi)

∂θ

18 end
19 until convergence;

• Apple’s App Store: The dataset is offered by [12,13] and con-
sists of the apps in the ‘‘Top Free 300’’ and ‘‘Top Paid 300’’
leaderboards from Feb. 2010 to Sep. 2012, and the related
user ratings and review information. After filtering users and
apps with less than 10 rating records, we obtain 8,834 users
and 4,105 apps with 150,797 rating records. Each rating
record in this dataset has three views, i.e., users, category,
and text. The user and category views are constructed using
the same way as in the Google Play dataset. The text view
is represented by the first 200 words indexes.

The embedding vectors of the features in all the views can be
obtained by the embedding layer turning the feature indexes into
dense vectors of a fixed size.

We randomly split the dataset into three parts: K% (K =
60, 70, 80) for training, 10% for validation, and 10% for testing.
Each experiment is repeated 10 times, and the mean value of each
metric is reported.

4.2. Evaluation metric

We use Mean Absolute Error (MAE) and Mean Square Error
(MSE) [14] to evaluate the performance of the proposed model
and other baselines. The definition of MAE is:

MAE =
1
N

∑
i,j

|Rij − R̂ij| (10)

where Rij represents the rating user i gave to app j, and R̂ij denotes
the rating predicted by a method. Moreover, N is the number of
tested ratings. The metric MSE is defined as:

MSE =
1
N

∑
i,j

(Rij − R̂ij)2 (11)

A smaller MAE or MSE indicates the better performance.
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4.3. Compared models

We compare following models to demonstrate the effective-
ness of the proposed model.

• FM. It is the Factorization Machine [7] that explores pairwise
interactions between all features without view segmenta-
tion. We implement it under neural network structure.
• Wide&Deep. This model is proposed by Google to model

low-order and high-order feature interactions simultane-
ously [15].
• AFM. Attentional Factorization Machines [9] improves FM

model by utilizing the attention mechanism to discriminate
the importance of feature interactions.
• DeepFM. It is a new neural network model that models low-

order feature interactions like FM and models high-order
feature interactions like deep neural network [8].
• MV-FM. It is a variation of the proposed MV-AFM with-

out considering the hierarchical attention network and only
conducting the interactions between features from different
views (i.e., view segmentation).
• MV-AFM. It is the proposed multi-view factorization ma-

chines with feature-level and view-level attention networks.

All the models except DeepFM are trained by the mini-batch
Adagrad with learning rate 0.01. The learning rate for DeepFM is
0.001. The batch size is set to 256 for all models. The embedding
layers in the neural network based models are the same and
the embedding size is set to 20. The hidden layer size of all the
attention networks is set to 20, same as the embedding size.
We use the early stopping strategy based on the performance on
validation set.

4.4. Performance comparison

In this subsection, we compare the performance of the pro-
posed MV-AFM model and the baselines with respect to two
metrics, i.e., MAE and MSE. Tables 2 and 3 show the overall per-
formance all the prediction methods on Google Play and Apple’s
App Store, from which we have the following observations.

• It can be found that the proposed MV-AFM achieves the best
performance among all the models on both datasets. For
Google Play, MV-AFM obtains the improvements of 2.68%
and 4.80% in terms of MAE and MSE for 70% training data
in the maximum extent. For the other dataset, the improve-
ments are 2.99% and 2.39% in terms of MAE and MSE for
70% training data. The progress is powerful proof of the
effectiveness of the proposed MV-AFM.
• MV-AFM outperforms its variation MV-FM, which indicates

the superiority of the feature-level and view-level attention
mechanism. The two-level attention network effectively dis-
criminate the representative features in each view and the
significant interactions between views.
• The models considering multiple views (i.e., MV-FM, MV-

AFM) outperform FM and AFM. It demonstrates that the
view segmentation can effectively improve the performance
by reducing the redundant feature interactions within the
same view.
• The models incorporating attention mechanism (i.e., AFM,

MV-AFM) outperform the basic FM model. It proves the
attention-based networks is capable of filtering out the un-
informative features.
• The Wide&Deep and DeepFM, especially the latter, make

some improvement compared to FM because of the deep
components in the models. DeepFM achieves a better per-
formance as it has a shared input and embedding vector for
each part. Besides, compared to Wide&Deep model, DeepFM
does not require tedious featuring engineering.

• Comparing the two datasets, it can be found that the su-
periority of the proposed MV-AFM is more significant for
Google Play dataset. It is probably because of the fewer
categories which might not sufficiently discriminate the im-
portant features in the specific category. Moreover, the two
categories in Apple App Store, i.e., ‘‘Free’’ and ‘‘Paid’’, do
not have their own unique characteristics and are not easy
to differentiate from each other. Nonetheless, even with
very limited feature information, the proposed MV-AFM still
outperform the baseline models.

4.5. Feature view analysis

As one significant contribution of MV-AFM is the construction
of interactions between different feature views, we explore the
impact of feature views on the regression models. Consider-
ing the feature views of Apple’s App Store are not enough, we
only investigate the view impact on Google Play. Each rating
record consists of four views, i.e., user, app auxiliary information
(category, permission, and description text). We only compare
the performance of models utilizing three views and four views
rather than two views for two main reasons: two views (user
and single app auxiliary feature) can only provide one interaction
and it does not meet the setting of the proposed MV-AFM whose
main idea is learning the attention weights of different view
interactions; single category view or permission view is unable
to exactly represent the corresponding app. Fig. 2 shows the
prediction performance of MV-AFM and baseline models with
three and four feature views. Note that U, C, P, T denote the views
of user, category, permission, and description text, respectively.
It can be found that for each model, the performance of view
setting ‘U+C+P’ is the worst. We argue that neither of category
view and permission are view is specific to apps. In other words,
it is entirely possible that some apps belong to the same category
and have the same permissions. The discriminative information
provided by these two feature views is limited. When considering
the description text, the models get impressive prediction results,
which indicates that the feature view of text can offer more sig-
nificant information. With all the settings of views except ‘U+C+P’,
the proposed MV-AFM outperforms the other baselines. The ob-
vious improvement obtained by MV-AFM proves the power of
two level attention structure which can effectively learn the
significant features and view interactions. Though the proposed
MV-AFM get comparable results with the settings involving text
view, the overall best performance is provided by the utilization
of four views. It is probably because that more feature views
bring more complementary information and MV-AFM is capable
of training a proper combination of these information.

4.6. Parameter analysis

In this subsection, we analyze the impact of two important
parameters in the proposed model, embedding size (number of
latent factors) and the hidden layer size of the attention network
(number of attention factors) based on Google Play dataset. For
clarity, we compare the proposed MV-AFM and AFM as both of
them are affected by the two parameters. We also implement FM
model as the baseline for comparison.

Embedding Size. To analyze the impact of embedding size,
we implement MV-AFM compared with FM and AFM by fixing
the number of attention factors as 20. We can find that MV-
AFM achieves the best performance overall. As shown in Fig. 3,
increasing the embedding size does not always bring benefits.
AFM keeps a stable performance while FM and MV-AFM even
perform worse (especially for MSE) when the embedding size
is increased from 30 to 50. It is mainly caused by the growing
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Table 2
Performance comparison on Google Play dataset.
Training Metrics FM Wide&Deep AFM DeepFM MV-FM MV-AFM Improvement

60% MAE 0.9388 0.9319 0.9317 0.9383 0.9416 0.9303 1.19%
MSE 1.6791 1.7168 1.6474 1.6403 1.6383 1.6299 5.06%

70% MAE 0.9335 0.9259 0.9391 0.9387 0.9348 0.9140 2.68%
MSE 1.6337 1.6671 1.6165 1.6027 1.5913 1.5871 4.80%

80% MAE 0.9238 0.9125 0.9295 0.9268 0.9216 0.9106 2.03%
MSE 1.6187 1.6368 1.6050 1.6051 1.5896 1.5855 3.14%

The best results are listed in bold.

Table 3
Performance comparison on Apple App Store dataset.
Training Metrics FM Wide&Deep AFM DeepFM MV-FM MV-AFM Improvement

60% MAE 1.0556 1.0479 1.0408 1.0322 1.0345 1.0271 2.70%
MSE 1.7370 1.7249 1.7115 1.7305 1.7231 1.7078 1.68%

70% MAE 1.0428 1.0330 1.0297 1.0179 1.0205 1.0117 2.99%
MSE 1.6982 1.6733 1.6654 1.6834 1.6769 1.6576 2.39%

80% MAE 1.0385 1.0459 1.0283 1.0163 1.0176 1.0130 3.14%
MSE 1.6836 1.6865 1.6616 1.6771 1.6645 1.6543 1.91%

The best results are listed in bold.

Fig. 2. Performance of MV-AFM and baseline models with different feature views.

Fig. 3. Performance of MV-AFM w.r.t. different embedding size.

model complexity brought by the increasing embedding size,
which makes the model tend to overfit. In our dataset, it is proper
to set the embedding size to 20.

Attention Factor. We investigate the impact of the hidden
layer size of attention networks in AFM and the proposed MV-
AFM model. Here we set embedding size as 20. As MV-AFM
has two levels of attention networks, we change the number of
attention factors of one level with that of another level fixed
by 20. Fig. 4 shows the performance in terms of MAE and MSE
with different attention factors. MV-AFM(F) means changing the
hidden layer size of feature-level attention network, and MV-
AFM(V) denotes changing the number of view-level attention

factors. It can be observed that MV-AFM model consistently out-
performs the baseline models, even when compared with the
optimal performance of FM and AFM, which proves the usefulness
of the two-level attention network in learning the weights of
features in a view and view interactions. We can also find that
the performance of AFM is stable while MV-AFM has a larger
fluctuation. Compared to MV-AFM(V), MV-AFM(F) provides the
more stable results, which indicates that the MV-AFM model is
more sensitive to the hidden layer size of view-level attention
network. With a proper number of attention factors, MV-AFM can
be significantly improved. In our dataset, 20 attention factors for
both feature-level and view-level attention networks is a good
choice.
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Fig. 4. Performance of MV-AFM w.r.t. different attention factors.

Table 4
Efficiency on Google Play.

Ave.Time (s) #Para

FM 1.50 822,529
Wide&Deep 4.64 1,068,911
AFM 163.79 822,989
DeepFM 13.85 965,330
MV-FM 7.40 822,529
MV-AFM 68.65 825,731

Table 5
Efficiency on Apple’s App Store.

Ave.Time (s) #Para

FM 3.00 815,410
Wide&Deep 10.59 1,032,017
AFM 266.41 815,870
DeepFM 30.70 946,032
MV-FM 2.64 815,410
MV-AFM 201.69 818,171

4.7. Efficiency analysis

Tables 4 and 5 record the number of parameters and running
time of all the methods on two datasets. As we apply early
stopping strategy in the evaluation, the number of epochs in
different methods are different. So we average the running time
as the time of each epoch.

It can be found that compared to the baseline models except
AFM, the proposed MV-AFM has no advantage in running time.
AFM and MV-AFM require more time for each epoch due to
the computation of attention scores. Though MV-AFM has two
layers of attention, its computational efficiency is higher than
AFM, which is mainly caused by the view segmentation. The
variation of MV-AFM (i.e., MV-FM) has relatively high efficiency,
especially for the Apple’ App Store. Wide&Deep and DeepFM need
to train much more parameters than the other models as they
consider both low-order and high-order feature interactions. The
rest methods have the similar parameter numbers since most
parameters come from the embedding layer which is almost the
same.

In summary, the view segmentation approach is shown to be
very effective. Both MV-AFM and MV-FM are different ways to
implement view segmentation. MV-AFM is the most accurate but
tends to be slow due to two layers of attention. If speed is the
concerned, one can consider its variation MV-FM which is very
fast, but less accurate.

4.8. Case study

In this subsection, we provide two examples of Google Play
in Fig. 5 for a clear understanding of the attention mechanism in

MV-AFM. As shown in Fig. 5, for the feature level, we highlight
the words assigned with higher attention values for the view of
description text and use a heat map to represent the attention
values of features in permission view. For the view-level, we
show the attention values of all the six view interactions through
bar graph in which U, C, P, T denote the views of user, category,
permission, and description text, respectively. It is observed that
the words in description text assigned the higher weights can
substantially represent the details for the functions of apps. For
example, terms like ‘location’, ‘toilets’ indicate the content of
app Just In Time to some extent, and words like ‘songs’, ‘audio’,
and ‘recorder’ in part reflect the function of app J4T Multitrack
Recorder. The attention distributions of different instances are
quite different. For the example in Fig. 5(a), the attention values
of user-text interaction and category-text interaction are much
higher than the others, which indicates the interactions between
user and description, category and description provide useful
complementary information. The attention values of interactions
involving permission view are relatively small, which is prob-
ably because the permissions with high feature-level attention
values are very common in many other apps. For the example
in Fig. 5(b), the importance of description diminishes as the
category and permission provide information directly related to
the app function (i.e., Music & Audio and record audio). We can
find that the weights of permission-text interaction in both ex-
amples are quite low. It is probably because of the complex
feature components in these two views which easily brings noise.
These observations suggest that MV-AFM is able to capture the
significant features and view interactions via the hierarchical
attentions.

5. Related work

To the best of our knowledge, this is the first work consid-
ering the multiple interactions between views with attention-
based neural network to facilitate mobile app recommendation.
From the conceptual perspective, three topics is closely related
to this work: mobile app recommendation, multi-view deep rec-
ommender systems, and attention mechanism. We give a short
overview of these areas and distinguish our work from other
existing approaches.

Mobile App Recommendation. As an effective solution for
information overload, recommender system has been widely
adopted in various domains [16–18]. A hybrid model for music
item recommendation is proposed in [18], which leverages both
collaborative information coming from the user’s community and
content information from the knowledge graph. Luo et al. [16,
19] propose a second-order latent factor based approach for
preference prediction and adopt the principle of Hessian-free
optimization to decrease the computational cost. Some work
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Fig. 5. Examples of the results on feature-level attention and view-level attention. For the feature-level, we highlight the words assigned higher attention values for
the view of description text. We use a heat map to represent the attention values of features in permission view, in which the darker color indicates the higher
attention value. For the view-level, we show the attention values of all the six view interactions. Here U, C, P, T represent the views of user, category, permission,
and description text, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

focus on addressing the problem of high computational and
storage complexity in traditional recommender systems [20–22].
Recently, mobile app recommendation has drawn an increasing
number of attentions as an effective way to alleviate information
overload in app market [4,5,23]. In [24], Yin et al. apply users’
view/download sequences to mine the actual value and tempting
value of apps, which are used to build a recommendation model
considering the contest between apps. Zhu et al. [4] propose a
flexible app recommendation approach combining apps’ popular-
ity and users’ security preferences. Cao et al. [3] propose a hybrid
solution for app recommendation that jointly models numerical
ratings and textual content from multiple platforms. Liu et al. [25]
propose a structural user choice model to learn fine-grained user
preferences by leveraging the hierarchical taxonomy of apps as
well as the competitive relationships among apps. [26] develops
a sparse additive generative model for mobile app recommen-
dation which jointly learns user interests and category-aware
user privacy preferences in a unified way. Liang et al. propose a
feature-oriented model to learn user preferences on apps which
firstly predicts user ratings on features and uses them to generate
the ratings on apps [5]. In this work, we proposed to model a neu-
ral network with attention mechanism considering multi-view
features.

Multi-View Deep Recommender Systems. Multi-view learn-
ing has been applied for various tasks, such as clustering, clas-
sification, prediction [27–30]. Recently, multi-view based rec-
ommendation draws more and more attentions, which can be
roughly classified into three types: multi-view tensor-based rec-
ommendation, multi-view latent factor based recommendation,
multi-view deep learning based recommendation. Our work is
related to multi-view deep learning based recommendation [17,
31–37]. In [31], Elkahky et al. develop a multi-view deep learning
model for recommendation which uses a DNN to map high-
dimensional sparse features from different domains into dense
features in a joint semantic space. Based on this work, Song
et al. [32] incorporate both long-term static and short-term tem-
poral user preferences to improve the recommendation perfor-
mance. In [35], each type of information source (review text,
product image, numerical rating, etc.) is adopted to learn the
corresponding user and item representations based on avail-
able (deep) representation learning architectures. The mentioned
three works mainly apply the feedforward neural network, while
some other works try more complex neural network for rec-
ommendation. [34] proposes a multi-view recurrent model for
sequential recommendation in which the item representation
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is constructed with multi-view features (visual and textual fea-
tures). [17] introduces two parallel convolutional networks to
learn from the user view and the item view. Lu et al. [33] propose
structural factorization machines (SFMs) to learn the common
latent spaces shared by multi-view tensors and automatically
adjust the importance of each view in the predictive model.

Attention Mechanism has been widely recognized as an effec-
tive technique in various tasks, such as machine translation [38,
39], speech recognition [40–42], caption generation [43–45] and
so on. It works mainly because of the reasonable assumption that
human recognitive attention is able to focus on certain parts of
the entire perception space. Recently, attention-based method is
successfully expanded into recommender systems [46–50] as it
is able to filter out uninformative content and select the most
representative information. Wu et al. [46] identify three social
contextual aspects that affect users’ preferences from heteroge-
neous data sources and design a hierarchical attention network
to model the hierarchical structure of social contextual image
recommendation. Chen et al. [49] present a CF framework that
employs attention mechanism to address the implicit feedback
in multimedia recommendation. The proposed model is a neural
network consisting of a component-level attention module an
item-level attention module. In [50], a neural network model
named Neural Attentive Item Similarity model (NAIS) is proposed
for item-based CF. The attention network in NAIS is able to distin-
guish which historical items in a user profile are more significant
for a prediction. [47] proposes an attentive aspect-based rec-
ommendation model which effectively captures the interactions
between aspects extracted from reviews for recommendation.

It is worth noting that the existing works for app recom-
mendation have not tried deep learning model with multi-view
features. Motivated from aforementioned works, this paper tries
to offer accurate prediction of users’ preference on apps by build-
ing a neural network that models the view interactions and
estimating the importance of different interactions with attention
network.

6. Conclusions

In this paper, we aim to make accurate rating prediction for
mobile apps and propose an hierarchical neural network called
MV-AFM that combines a multi-view variation of FM model with
attention mechanism to learn sophisticated feature interactions.
Compared with existing FM-based neural network models, the
novelty of MV-AFM is the consideration of view segmentation,
namely modeling the feature interactions from different views.
The proposed feature-level attention and view-level attention in
MV-AFM are capable of discriminating the weights of features
within each view and interactions between views. We compare
the proposed model with a set of state-of-the-art models on two
real-world datasets. The experimental results demonstrate the
effectiveness of MV-AFM model.
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