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Abstract—Counterfactual thinking describes a psychological
phenomenon that people re-infer the possible results with dif-
ferent solutions about things that have already happened. It
helps people to gain more experience from mistakes and thus
to perform better in similar future tasks. This paper inves-
tigates the counterfactual thinking for agents to find optimal
decision-making strategies in multi-agent reinforcement learning
environments. In particular, we propose a multi-agent deep
reinforcement learning model with a structure which mimics the
human-psychological counterfactual thinking process to improve
the competitive abilities for agents. To this end, our model
generates several possible actions (intent actions) with a par-
allel policy structure and estimates the rewards and regrets
for these intent actions based on its current understanding
of the environment. Our model incorporates a scenario-based
framework to link the estimated regrets with its inner policies.
During the iterations, our model updates the parallel policies
and the corresponding scenario-based regrets for agents simul-
taneously. To verify the effectiveness of our proposed model, we
conduct extensive experiments on two different environments
with real-world applications. Experimental results show that
counterfactual thinking can actually benefit the agents to obtain
more accumulative rewards from the environments with fair
information by comparing to their opponents while keeping high
performing efficiency.

Index Terms—Multi-agent, reinforcement learning, counterfac-
tual thinking, competitive game

I. INTRODUCTION

Discovering optimized policies for individuals in complex
environments is a prevalent and important task in the real
world. For example, (a) traders demand to explore competitive
pricing strategies in order to get maximum revenue from
markets when competing with other traders [1]; (b) network
switches need optimized switching logic to improve their com-
munication efficiency with limited bandwidth by considering
other switches [2]; (c) self-driving cars require reasonable and
robust driving controls in complex traffic environments with
other cars [3].

∗Work done while at University of Illinois at Chicago
†Lu Bai is corresponding author (email: bailucs@cufe.edu.cn).
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Fig. 1: Explore and exploit the environments as RL processes.

The core challenge raised in aforementioned scenarios is
to find the optimized action policies for AI agents with lim-
ited knowledge about environments. Currently, many existing
works learn the policies via the process of “exploration-
exploitation” [4] which exploits optimized actions from the
known environment as well as explores more potential ac-
tions on the unknown environment. From the perspective of
data mining, this “exploration-exploitation” process can be
considered as discovering the “action-state-reward” patterns
that maximize total rewards from a huge exploring-dataset
generated by agents.

There is a more complex situation that the environment may
consist of multiple agents and each of them needs to compete
with the others. In this scenario, it is imperative for each agent
to find optimal action strategies in order to get more rewards
than its competitors. An intuitive solution is to model this
process as a Markov decision process (MDP) [5] and try to
approach the problem by single-agent reinforcement learning,
without considering the actions of other agents [6].

Figure 1 shows a schema of the process of reinforcement
learning on two specific tasks, i.e., self-driving and marketing.
Reinforcement learning aims to train agents to find policies
which lead them to solve the tasks they do not have complete
prior knowledge. Under the RL framework, an agent policy
(i.e., µ(s) in Figure 1) is a probabilistic distribution of actions
for the agent which is related to its observation or state for
an environment. When an agent (i.e., car or trader) observes

ar
X

iv
:1

90
8.

04
57

3v
2 

 [
cs

.L
G

] 
 1

6 
A

ug
 2

01
9



a new environment state, it performs an action and obtains a
reward.

The RL training for agents is a greedy iterative process
and it usually starts with a randomized exploration which is
implemented by initializing a totally stochastic policy and
then revising the policy by the received rewards at each
iteration. The RL explores the policy space and favors those
policies that better approximate to the globally optimal policy.
Therefore, theoretically, by accumulatively exploring more
policy subspaces at each iteration, the probability to get a
better policy of an agent is increasing.
Challenges. However, the traditional single-agent reinforce-
ment learning approaches ignore the interactions and the
decision strategies of other competitors. There are mainly two
challenges to extend the reinforcement learning from single-
agent to multi-agent scenarios. (a) Optimize action policy
among competitors. Generally, the single-agent reinforcement
learning method (SRL) only optimizes the action policy for a
specific agent. SRL does not model the interactions between
multiple agents. Consequently, it challenges a lot when using
SRL to optimize the action policy for a specific agent among
a group of competitors simultaneously. (b) Learn action pol-
icy based on sparse feedbacks. Since history never repeats
itself, historical data only record feedbacks sparsely under the
actions which have already happened, it challenges a lot to
effectively learn optimized policies from historical data with
sparse “action-state-reward” tuples. (c) Infer the counterfactual
feedbacks. One solution to the sparse feedbacks issue is to
infer the counterfactual feedbacks for those historical non-
chosen optional actions which have the potential to improve
the learning efficiency for agent action policies. However, it
still remains a challenge to counterfactually infer the possible
feedbacks from an environment when an agent performs
different optional actions at the same historical moment.

Currently, many existing works have applied the multi-
agent deep reinforcement learning framework to mitigate the
issues in environments with several agents. However, most of
them [7] [8] [9] still do not incorporate the counterfactual
information contained in the history observation data which
could further improve the learning efficiency for agents.
Our Solutions and Contributions. To address the aforemen-
tioned challenges, in this paper, we formalize our problem
as the competitive multi-agent deep reinforcement learning
with a centralized critic [8] and improve the learning ef-
ficiency of agents by estimating the possible rewards for
agents based on the historical observation. To this end, we
propose a CounterFactual Thinking agent (CFT) with the
off-policy actor-critic framework by mimicking the human-
psychological activities. The CFT agent works in the following
process: when it observes a new environment state, it uses
several parallel policies to develop action options or intents,
for agents and estimates returns for the intents by its current
understanding for the environment through regrets created by
previous iterations. This is a similar process as the psycholog-
ical activity that people reactive choices resulting from one’s
own experience and environment [10]. With the estimated

returns, the CFT agent chooses one of the policies to generate
its practical actions and receives new regrets for those non-
chosen policies by measuring the loss between the estimated
returns and practical rewards. This also mimics the human-
psychological activities that people suffer regrets after making
decisions by observing the gap between ideal and reality. Then
the received regrets help the CFT agent to choose the policies
in the next iteration.

It is worth mentioning that the proposed CFT agent is also
more effective than existing multi-agent deep reinforcement
learning methods during the training process since the parallel
policy structure helps CFT agents to search from a wider range
of policy subspaces at each iteration. Therefore, it could also
be more informative than other related methods in multi-agent
environments. We apply the CFT agent to several competitive
multi-agent reinforcement learning tasks (waterworld, pursuit-
evasion [11]) and real-world applications. The experimental
result shows the CFT agents could learn more competitive
action policy than other alternatives.

In summary, the main contributions of this paper can be
summarized as follows:
• We study the problem of competing with each other

in a multi-agent environment with a competitive multi-
agent deep reinforcement learning framework. Within this
framework, we define the competitive ability of an agent
as the ability to explore more policy subspaces.

• We propose the counterfactual thinking agent (CFT) to
enhance the competitive ability of agents in multi-agent
environments. CFT generates several potential intents
through parallel policy structure and learns the corre-
sponding regrets through the difference between esti-
mated returns and practical rewards. The intent generation
and regret learning process supervise each other with a
max-min process.

• We demonstrate that CFT agents are more effective
than their opponents both in simulated and real-world
environments while keeping high performing efficiency.
This shows that counterfactual thinking mechanism helps
agents explore more policy subspaces with the same
iterations than other alternatives.

Organization. The remainder of this paper is organized as
follows. In Section II, we introduce some background knowl-
edge on multi-agent reinforcement learning. In Section III,
we first give an overview of our proposed framework and
then present each module of our proposed framework in
detail. Section IV describes the datasets and environments
used in our experiment and shows the experimental results
and analysis. Section V highlights some works related to this
paper. Finally, we conclude this paper and give some future
research directions in Section VI.

II. PRELIMINARIES

When an agent tries to maximize its interests from an
environment, it must consider both the reward it receives
after each action and feedbacks from the environment. This
could be simplified as a Markov decision process (MDP)



and use reinforcement learning methods to search the optimal
action policy [12]. In our scenario, since our problem relates
to the interaction between several agents, a natural way to
explore this problem is to use an N -agents MDP [11]. In this
section, we first introduce some background knowledge about
multi-agent reinforcement learning and then mathematically
formularized the problem studied in this paper.

A. Multi-Agent Reinforcement Learning Framework

In this paper, we consider a multi-agent extension of MDP
named partially observable Markov games [13]. A Markov
game for N agents is defined by a set of states S describing
the possible configurations of all agents, a set of actions,
A1,A2, . . . ,AN , a set of states S which represents the ob-
served environment settings of all agents and a state transition
function T .

T : S ×A1 ×A2 × . . .×AN 7→ S, (1)

where each agent i(i = 1, 2, 3, . . . , N) gets rewards as a
function of the state and its action ri:

ri : S ×Ai 7→ R. (2)

The policy for each agent i is a probabilistic distribution which
is defined as:

πi(a, s|θ) 7→ [0, 1], (3)

where for ∀a ∈ Ai and ∀s ∈ S. The target for each agent i is
to maximize its own accumulated expectation reward Ri:

Ri =

∞∑
t=0

γtrti , (4)

where 0 < γ< 1 is a discount factor.
We adjust our setting by omitting the mapping from states to

agent observations. This allows us to compare the competitive
abilities of agents with different action policies under the same
state information simultaneously.

B. Temporal Difference Learning

Many MDP problems are often solved by multi-agent re-
inforcement learning (MARL) [14]. Since a real-world ap-
plication contains more factors than agents could observe,
we discuss our problem in the stochastic environment [15]
with model-free methods. Monte Carlo and temporal differ-
ence learning (TD) are often used model-free methods to
deal with reinforcement learning (RL) problems. Furthermore,
since real-world applications are usually continuous without
terminate states, we use TD methods to study the MARL
problem in this paper.

The mainstream TD methods to learn the optimal policies
for RL problems are categorized into value-based, policy-
based [16] and combined methods (consider both the value
and policy optimization). The representative methods include
Q-learning [17], policy gradient algorithms (PG) [18], and
actor-critic algorithms [19]. All these methods relates to two
important notations: the value (V) function and action-value
(Q) function [20].

If we let the agent optimize its policy independently, the V
and Q function for agent i are denoted as follows.

V πi (s) = E[R1
i |s1 = s;π], (5)

Qπi (s, a) = E[R1
i |s1 = s,A1

i = a;π], (6)

where Rti can be obtained by:

Rti = γ0ri(st, a) + γ1ri(st+1, a) + γ2ri(st+3, a) + .... (7)

It is the total discounted reward from time-step t for agent i.
Intuitionally, V πi (s) refers to the reward expectation of agent
i for state s and Qπi (s, a) represents the reward expectation of
agent i when it taking action a at state s.

C. Approximate Q and V with Deep Neural Networks

In order to solve the combinatorial explosion problem [21]
in evaluating policies under high state or action dimensions,
recent methods apply deep neural networks to estimate V and
Q functions. This lead to the flourishing of deep reinforcement
learning methods (DRL). The current popular DRL methods
include Deep Q-Network (DQN) [22] and Deep Deterministic
Policy Gradient (DDPG) [23].

DQN is the deep learning extension of Q-learning. It follows
the value-based way and learns the Q-function with deep
neural networks. Since DQN usually needs discrete candidate
actions, and it may suffer non-stationary problems under multi-
agent settings [8], it is rare to use DQN in problems with
continuous action spaces.

DDPG is a deep reinforcement learning method which
combines a policy estimation and a value computation process
together. It originates from PG [18] which models the perfor-
mance of policy for agent i as J(θi) = Es∼ρπi ,a∼πi(Ri). Then
the gradient of the policy for agent i is obtained by:

∇J(θi) = E
s∼ρπi ,a∼πθii

[∇θi log πi(a, s|θi)Qi(s, a|θi)], (8)

where ρπi is the state distribution for agent i by exploring the
policy space with policy πi.

Since computing PG requires to integrate over both state
and action spaces, PG suffers from the high variance problem
[8] and needs more samples for training. Deterministic policy
gradient (DPG) [20] alleviates this problem by providing a
continuous policy function a = µ(s|θi) for agent i. This
change avoids the integral over the action space. With function
µ(s|θi), the gradient of DPG for agent i can be written as:

∇J(µθi) = Es∼ρµ [∇θiµ(s|θi)∇aQi(s, a|θi)|a=µ(s|θi)]. (9)

Since DPG only integrates over the state space, it can
be estimated more efficiently than stochastic policy gradient
algorithms [20] .

As a deep learning extension of DPG, by applying the off-
policy actor-critic framework, DDPG [23] uses a stochastic
behavior policy β with noise in Gauss distribution to explore
the state space ρβ and a deterministic target policy to approxi-
mate the critic policy. By learning the Q-values through neural
networks, the gradient of agent i in DDPG then becomes:

∇J(θµi )=Est∼ρβi[∇θµiµ(st|θ
µ
i )∇aQi(s, a|θ

Q
i )|a=µ(st|θµi )], (10)



where θQi and θµi are parameters for the target and current
policy neural network respectively. During the training pro-
cess, DDPG uses a replay buffer D to record the “state-action-
reward” tuples obtained by the exploration policy β and then
optimizes the parameters for the current neural network by
drawing sample batches from D. With a trained current policy
neural network, it updates the target policy neural network by
a soft-updating method. This framework stabilizes the learning
process and avoids the large variance problem in the original
policy gradient methods and its deterministic action outputs
are useful in continuous control RL problems. Therefore,
DDPG has successfully applied in the MARL [8] problems and
our model follows the similar off-policy actor-critic framework
as DDPG.

D. Compete in N-Agent MDP

In this paper, we aim to extend the reinforcement learning
from single-agent to multi-agent settings in a competitive
environment. In order to make all agents compete with each
other in an environment, we redefine the Q-values for all
agents as the following equation.

Qπi(st, a)=γQ
π
i(st+1, a)+ r′i(st, a), (i = 1, 2, ..., N), (11)

where r′i(st, a) is a revised rewards which is denoted as:

r′i(st, a) = (1− α)ri(st, a)+α
−rî(st, a)
N − 1

. (12)

In Equation 12, rî(st, a) is the total rewards of all other
agents than i; The weight α (0 ≤ α < 1) decides the
ratio to consider the rewards of others for agent i. Therefore,
the weight of α controls the degree of competition among
all agents. e.g. when α > 0.5, the related agents care its
own future rewards more than other the rewards of its other
competitors.

With all agents maximizing the Q-values computed by
Equation 11, a multi-agent environment becomes a more
competitive environment than it is used to be.

III. COUNTERFACTUAL THINKING AGENT IN
MULTI-AGENT REINFORCEMENT LEARNING

Inspired by a psychological phenomenon, named counter-
factual thinking, that people re-infer the possible results with
different solutions about something that has already happened,
this paper proposes to introduce a counterfactual thinking
mechanism for an agent in a multi-agent environment. We
argue that it may help people to gain more experience from
mistakes and thus to perform better in similar future tasks [24].

A. An Overview

As shown in Figure 2, our counterfactual thinking agent
consists of a counterfactual thinking actor and a counterfac-
tual thinking critic. Different from the previous actor-critic
works [8], our CFT agent generates several candidate actions
by following its parallel policies when encountering a new
state. Then, it chooses one of the candidate actions with
its experience (historical regrets for parallel policies) to the

environment. This mimics the behavior when a human seeking
additional options before making decisions [25]. Finally, the
CFT agent revises its polices and the related regrets by evaluat-
ing the candidate actions with its current critic simultaneously.
The experiment results show that this mechanism could bring
more accumulative reward within the same episode for agents
and thus make the related agents more competitive than their
competitors. We will elaborate each module in detail in the
following subsections.

B. Counterfactual Thinking Actor

A counterfactual thinking actor runs in the following pro-
cess. It first matches the current encountered state into a
specific scenario which belongs to the results of a state clus-
tering process. Then it develops a few intents from K parallel
policies according to the matched scenario. Finally, it outputs
both the minimum-regret action and all candidate actions to
the environment and critic. With the Q-value estimated by the
critic, the actor updates its regrets about the candidate policies.
Concretely, we define the related notations for a counterfactual
thinking actor as the followings.
Counterfactual Thinking Actor. A counterfactual thinking
(CFT) actor has K parallel policies µi (i = 1, 2, ...,K), where
each policy associates to a regret mk,l (mk,l ∈ [0, 1]) under
the l-th scenario. A counterfactual thinking actor generates K
intents µi(s).

To reduce the variance of the actions which are generated by
counterfactual thinking actor, we combine a clustering process
to the forward computation of the counterfactual thinking
actor. As it is shown in Figure 2 (b), we use a clustering
method to divide the encountered states of a counterfactual
thinking actor to several clusters (named “scenarios”). And
then, every time our actor encounters a new state, it will check
the clustering results to find the most related scenario and
associates its policies with the corresponding regrets τis for
that scenario.

In order to implement the parallel policy structure for coun-
terfactual thinking actors, we propose the K-parallel policy
layer in our actor which generates several intent actions with
a given state.
K-Parallel Policy Layer. A K-parallel policy layer contains
a RK×|g(s)|×|a| tensor C = {C1, C2, ..., CK} where Ck is a
R|g(s)|×|a| matrix (k = 1, 2, ...,K). The input for a K-parallel
policy layer is a R|g(s)| vector which represents an observed
state. Its output includes K vectors which represents K intent
actions or linear transformation of the intent actions. They can
be computed as follows:

Ik = g(s)× Ck, for k = 0, 1, 2, 3, . . . ,K. (13)

K-parallel policy layer generates K intent actions where Ik is
the k-th intent action; s is the current state; g(s) is a function
which can be extended to several linear transformations or
other neural layers. After obtaining K intent actions, we utilize
a data structure named scenario-regret matrix to evaluate the
parallel policies.
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Fig. 2: The framework counterfactual actor-critic reinforcement learning, where ai is the action of the i-th agent (the i-th agent
is a counterfactual thinking agent) and m:,l is the regret distribution for the l-th scenario.

Scenario-Regret Matrix. A scenario-regret matrix M =
{mk,l}K×L is a RK×L matrix which records the regret values
for K policies under L different scenarios. mk,l refers to the
prior regret value for the k-th policy under the l-th scenario.
We get the scenarios through the aforementioned clustering
process toward all encountered states by the actor. During
the forward computation of the counterfactual thinking agent,
every time a new state is observed, the actor first matches the
state to a scenario (with the scenario matcher in Figure 2 (b))
and then outputs the intent with the minimum regret as the
final action. The scenario matcher can be implemented by any
kind of similarity computation.

The scenario-regret matrix is randomly initialized at first
and then learned by receiving the regrets updated by the critic.
The final output of a counterfactual thinking actor can be
obtained through Algorithm 1. The SOFTMIN function [26]

Algorithm 1: Forward computing for a CFT actor
Data: state s, random degree ε
Result: action a

1 begin
2 Initialize the scenario-regret matrix M randomly.
3 Generate a set of K intent actions I with a

K-parallel policy layer.
4 Match the state s to the l-the scenario.
5 With probability ε:
6 Output one of intent in I as a with the

probabilistic distribution of SOFTMIN(M ).
7 With probability (1− ε):
8 Output a =

∑
k∈[1,K]mk,lI

k.
9 end

in Algorithm 1 is an opposite operation to SOFTMAX which
gives the policy with the minimum regret with the biggest
weight. The random degree ε controls the ratio of Algorithm
1 to generate an action based on random sampling. Line 5-8
is the implementation for the “counterfactual decision maker”
in Figure 2 (b). The counterfactual thinking actor is trained

by the objective function.

argmax
θµi

qi, (14)

where qi is computed by the current critic neural network with
the state s and the outputted a from the CFT actor. θµi is the
parameters for the neural network of a CFT actor. Intuitively,
this process revises the parameter θµi for CFT actor to get the
maximized qi at each iteration.

C. Counterfactual Thinking Critic

The critic in our model has two simultaneous tasks during
the forward process: compute the Q-value and update the
scenario-regret matrix for the counterfactual thinking actor.
We discuss how this is implemented in this section.
Counterfactual thinking critic. A counterfactual thinking
critic computes the Q-values for all K intent actions gen-
erated by the counterfactual thinking actor. By computing
the maximum Q-value for all K actions, it calculates the
regret value for each intent actions. Since the counterfactual
thinking critic is a centralized critic, it also uses actions of all
agents to evaluate Q-values. To compute maximum Q-value
by considering all intent actions for an agent, we define the
following notation.
Counterfactual Q-value. In a multi-agent Markov game, if
the i-the agent applies the counterfactual thinking mechanism
(which means it uses the counterfactual thinking actor and
critic), s is the current state. The counterfactual Q-value qik
can be obtained by Equation 6 with the current Q network.

qki = Q(s, a1, a2, ..., I
k
i , ..., aN ), (15)

where a1, a2, ..., ai−1, ai+1, ..., aN are the actions of other
N − 1 agents in a multi-agent environment at this iteration.
In Equation 15, the action for the i-th agent is replaced by
every intent action of the K intent actions obtained by its
counterfactual thinking actor.

For each iteration, our critic outputs the maximum coun-
terfactual Q-value max(qi) of all qks (k = 1, 2, ...,K) for
the i-th agent. With max(qi), the posterior regrets for the i-th



agent under the l-th scenario are computed by the following
equation.

m∗k,l = max(qi)− qki , (16)

where k = 1, 2, ...,K. Then the objective function for a
counterfactual thinking critic of the i-th agent is:

arg min
θqi ,m:,l

(λ
|qt−1i − qti |2

n
+ (1− λ)KL(m:,l,m

∗
:,l)), (17)

where qt−1i is the current Q-value computed by Algorithm
2 and qti is the target Q-value which can be computed by
Equation 11. The KL function is the KL-divergence which
compares the difference between the prior and posterior regret
distribution m:,l and m∗:,l for all K intent action of the i-th
agent.

Algorithm 2: Forward computing for a CFT critic
Data: state s, practical action a, an intent actions set I
Result: qit−1 and m∗:,l

1 begin
2 Compute the qit−1 by the current Q-neural-network

with s and a.
3 Compute the qki for each intent Ik generated by CFT

actor.
4 Find the maximum Q-value max(qi) of all qki s.
5 Compute regrets m∗:,l for all intents by Eq. (15)

under the l-th scenario.
6 Output qit−1 and m∗:,l.
7 end

In Algorithm 2, Line 3 corresponds to the “Hypothesis infer-
ring” and Line 4-5 corresponds to the “Max-based evaluating”
in Figure 2 (c) respectively.

D. End-to-End Training

Our CFT agent consists of a counterfactual thinking actor
and a counterfactual thinking critic. Since both the forward
processes of them are differentiable, we train this model with
the back-propagation methods with an Adam [27] optimizer.
The training for CFT agents is a max-min process [28] which
maximizes the Q-value for the actor with current critic and
minimizes the difference between the current and target critics.
Since the CFT actor and critic are linked by a scenario-regret
matrix, during the training process, the actions outputted by the
CFT actor are weighted by the scenario-regret matrix learned
by last iteration and the CFT critic revises the scenario-regret
matrix with its forward process.

IV. EXPERIMENTS AND ANALYSIS

To verify the effectiveness of our proposed CFT, we con-
duct experiments on two standard multi-agent environments
with real-world applications. Overall the empirical results
demonstrate that the CFT excels on competitive multi-agent
reinforcement learning, consistently outperforming all other
approaches.

A. Compared Baselines

The comparison methods of this work are MADDPG [8],
CMPG [9] and our counterfactual thinking agent (CFT).
• MADDPG is the state-of-the-art method about the multi-

agent deep reinforcement learning. Since our model is
based on the similar off-policy actor-critic framework as
MADDPG, the comparison of MADDPG and our model
can directly tell us whether the proposed counterfactual
mechanism improves the competitive ability for an agent.

• CMPG uses historical actions of agents as the estimated
intents to enhance the stability of the learning process
for the actor-critic framework. Since CMPG is the latest
methods which improve the learning efficiency for RL
problems with a counterfactual style method, we also
compare our model with it.

B. Environment 1: Multi-Agent Water-World (MAWW)

Problem Background. This is a multi-agent version pursuer
and evader game in a simulated underwater environment which
is provided in MADRL [29]. Several pursuers are co-existing
to purchase some evaders in an environment with floating
poison objects and obstacles. Every time a pursuer captures
an evader, it receives +10 reward. What’s more, the pursuer
receives -1 reward when it encounters a poisoned object. This
environment can be used to research the mixed cooperative-
competitive behaviors between agents.
Training Setup. We set the scenario number to 16 and the
number of intent actions K to 4. Furthermore, since our
method is based on the off-policy actor-critic framework, we
set the exploration episode to 10 for each testing below. This
means that the policies for all agents are optimized after the
10th episode.
Results. In this experiment, we add two pursuers to compete
in a water world environment with 50 evaders and 50 poison
objects. To compare the competitive ability for each mentioned
method, we set one of the pursuers as a CFT or CMPG agent,
the others as DDPG agents. Furthermore, we also compare
the competitive abilities of CFT and CMPG. As it is shown
in Figure 3 (a), the rewards for two same DDPG agents
are almost the same. This means that there is no difference
between the competitive abilities of two DDPG agents. We
further analyze the results in Figure 3 (b) and (c) and discover
that the CFT agent receives significant more rewards than its
DDPG based competitors. Figure 3 (d) and (e) present that
CMPG can also improve the competitive abilities for an agent
in this task. Figure 3 (f) compares the competitive abilities for
CFT and CMPG agent directly, the result shows that CFT
agent can be more competitive than the CMPG agent. In
addition, we analyze the means and standard deviations of
rewards in all cases in Figure 2. The results are listed in Table
2, where the last row (corresponding to Figure 3 (f)) compares
the competitive abilities of a CFT agent (pursuer 0) and a
CMPG agent (pursuer 1). The star-marked pursuers in Table
2 apply CFT or CMPG and the none-star-marked pursuers
apply DDPG. In all, the results in this section confirm that
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Fig. 3: Comparison of accumulative rewards obtained by agents on MAWW environment. (a) directly use the framework of
MADDPG and it is shown no significant difference between the competitive abilities of two related agents; (b) and (c) compares
the competitive abilities between a pre-set counterfactual agent and an agent applying DDPG. (d) and (e) shows that CMPG
can also improve the competitive abilities for agents towards DDPG based competitors; (f) shows that a CFT agent is more
competitive than a CMPG agent.

our counterfactual mechanism (CFT) indeed helps an agent to
compete in the multi-agent environments.

C. Environment 2: Multi-Seller Marketing (MSM)
Problem Background. In the Multi-Seller Marketing (MSM)
environment, a market contains multiple sellers is a perfect
environment to fit the multi-agent Markov game framework.
To study the dynamic process between sellers in a multi-seller
market, we conduct experiments on two real-world datasets
(i.e. RETAIL1 and HOTEL2) of the MSM environment. Table
I shows the statistics of these two datasets. We use the first
100,000 rows of RETAIL and all rows of HOTEL in this
experiment.

RETAIL HOTEL
Rows 100,000 276,592
Start 2012-03-02 2012-11-01
End 2013-07-23 2013-06-30
Competitor num. 2,606 57,646

TABLE I: Dataset statistics

Those datasets (i.e., RETAIL and THOTEL) contain the
instant price as well as the volume of products (or hotel

1https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
2https://www.kaggle.com/c/expedia-personalized-sort/data

booking count), for different brands. We treat the instant
prices as the actions and the corresponding sales volume as
the reward for the corresponding brand sellers. Since our
model needs a centralized critic, the state for each agent is
the same with others which consists of instant sales volumes
for all sellers. To predict the feedbacks of a market, we
use a recurrent neural network model (RNN) [30] to learn
the relationship between the instant prices and rewards (by
modeling the prediction as a sequence-to-sequence learning
problem).
Training Setup. We set the scenario number to 16 and the
number of intent actions K to 6. Moreover, we also set the
exploration episode to 10 for each testing as in Section IV-B.

Methods MADDPG CFT CMPG
Pursuer0∗ 38.2±57.13 61.0±33.62 54.2±47.32
Pursuer1 37.9±42.04 22.2±31.17 48.3±47.51
Pursuer0 38.2±57.13 32.9±48.39 31.9±43.59
Pursuer1∗ 37.9±42.04 44.3±38.31 19.5±36.09
CFT vs CMPG - 43.4±55.83 19.7±32.89

TABLE II: Comparison of accumulative rewards. The star
marked pursuer is applying the competitive models.

Results on RETAIL dataset in the MSM environment. Figure



4 lists the comparison results between CFT and DDPG agents
on MSM with retail datasets. In this section, we extract the
price timeseries and sales volumes for top-7 sellers of the best-
seller product from RETAIL dataset. As introduced in 4.1, we
trained RNN with the extracted results. Based on Figure 4
(a), we analyze whether the RNN prediction model captures
the real-world rules. In order to ease the observation about
the difference of seller behaviors with the different market
occupation, we rank all sellers according to their accumulative
sales volumes and named them as “Seller 0” to “Seller 6”.

To further analyze the effective for counterfactual thinking
mechanism, we let seller 3 or 6 as the CFT agents respectively.
The result is shown in Figure 3 (b) and (c). We observe that
the ranks of seller 3 and 6 are highly improved after using the
CFT method in Figure 3 (b) and (c).
Results on HOTEL dataset in the MSM environment. Figure
5 compares the competitive abilities of agents on MSM with
HOTEL dataset. In this section, we extract the price timeseries
and sales volumes for top-5 brands of the most popular hotels
from HOTEL dataset. In a similar way of the last section,
we rank all hotel brands according to their accumulative sales
volumes and named them as “Hotel 0” to “Hotel 9”.

In this testing phase, we let hotel 0 or 1 to learn policies with
counterfactual mechanism respectively since they are the two
least competitive agents in Figure 4 (a). From Figure 4 (b) and
(c), we can observe that the accumulative rewards of a CFT
agent are significantly increased under the same environment
by competing with other DDPG based competitors (hotels).

In summary, both the results in Figure 3, 4 and 5 show
that our counterfactual mechanism indeed helps an agent to
become more competitive than it before in a multi-agent
Markov game environment.

D. Scalability

We also compare the scalability for all related methods
under MAWW in this section. To make a fair comparison,
we set this environment with 2 same agents of each type
(MADDPG, CFT, and CMPG) and all scalability experiments
are completed on a workstation with E3 CPU, 64 GB RAM,
and Nvidia P5000 GPU. Besides, we set the steps to explore
in each episode to 100, the batch size for sampling to 100
and the exploration episode to 10 for all agents. For every
CFT agent in this experiment, its scenario number L = 16
and the parallel policy number K = 4 (which is the same
settings as in IV.B). The result is shown in Figure 6. As it is
shown in Figure 6, the computation efficiency of CFT is linear
to the number of agents. We can observe that from Figure 6
(a), since the CMPG method needs to compute a normalized
Q-value based on all previous actions in the replay buffer, it
has the worst efficiency of all related methods. Furthermore,
since MADDPG only uses a one-way agent to generate one
exploration action and learns to update the action based on a
single current Q-value from an ordinary critic, it is the most
efficient method of all mentioned methods. Our CFT method
uses a parallel structure to search several policy sub-spaces
simultaneously, therefore, it is less efficient than MADDPG.

However, it is still a more efficient method by comparing to
CMPG. Figure 6 (b) shows the scalability of the CFT agent
towards numbers of intent actions. We observe that the CFT
agents are very efficient with the parallel policy number K
(from 2 to 10) and the computation time of CFT agents is
linear to the intended action number. Therefore, CFT has the
potential to be applied to large scale multi-agent reinforcement
learning problems.

V. RELATED WORK

Counterfactuals refer to the hypothetical states which are
opposite to the facts [31]. In studies about the complex systems
which can hardly be accurately recreated, scientists usually use
this idea to infer the consequences for unobserved conditions.
e.g. medical scientists apply counterfactuals to discover the
reasons to cause a certain disease [32]; psychologists use
counterfactual thinking to predict future decisions of people
in similar tasks [24]; historians infer the causal importance of
some special events via counterfactual thinking [33].

Reinforcement learning (RL) is an area of machine learning
to train agents to take ideal actions in a dynamic environment
in order to receive maximum accumulative rewards. Multi-
agent deep reinforcement learning (MADRL) is the recent
extension of RL to deal with the similar problems in high-
dimensional environments [34]. The hot topics for MADRL
include learning to communicate between agents [7], exploring
the competitive or cooperative behavior patterns for agents [8],
etc.

The main challenge to effectively train MADRL models is
to explore as much as policy subspaces with limit observations.
One reason for this problem is that it is difficult to completely
recreate a high-dimensional multi-agent environment in which
every agent behaves exactly the same as itself in history.
Therefore, the observed action-reward tuples from the running
environment are usually sparse and this sparse observation
hinders the convergence rate for MADRL models. Counter-
factual thinking shed a light on this issue by maximizing the
utilization of observations to improve the learning efficiency.
Concretely, to incorporate the counterfactual information into
the process of reinforcement learning. Wolpert et al. [35]
proposed the difference reward to revise the original rewards
of an agent by the rewards under a default action during the
simulation process. Jakob N. Foerster et al. [9] applies the
average of all historical actions of an agent as the estimation
for Q-values under counterfactual actions. This method use
a regularized reward as the estimation for the real reward to
compute the current Q-value for critics. All previous methods
improve the performance of agents under multi-agent settings.
However, they still do not directly address the problem to
increase the efficiency for exploring the policy subspaces.

To enlarge the exploration coverage of policy subspaces for
agents at each iteration, our method implements the coun-
terfactual thinking by mimicking the human psychobiological
process [24] with intent generating and evaluating with current
experience. The experimental results show that this indeed



 

 

No counterfactual agent 

   

‐500

0

500

1000

1500

2000

0 10 20 30 40 50

R
ew

ar
d

Episode

Seller 0

Seller 1

Seller 2

Seller 3

Seller 4

Seller 5

Seller 6

Seller 3

Seller 6

(a) All sellers are DDPG agents, which is the
default MADDPG.

 

Cf agent = 3 

‐1000

‐500

0

500

1000

1500

2000

2500

0 10 20 30 40 50

R
ew

ar
d

Episode

Seller 0

Seller 1

Seller 2

Seller 3

Seller 4

Seller 5

Seller 6

Seller 3

(b) Seller 3 is a CFT agent, others are DDPG
agents

 

Cf agent =6 

   

‐1000

‐500

0

500

1000

1500

2000

0 10 20 30 40 50

R
ew

ar
d

Episode

Seller 0

Seller 1

Seller 2

Seller 3

Seller 4

Seller 5

Seller 6

Seller 6

(c) Seller 6 is a CFT agent, others are DDPG
agents

Fig. 4: Comparison of different actors thinking with counterfactual actor-critic reinforcement learning on MSM with RETAIL
dataset.
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Fig. 5: Comparison of different actors thinking with counterfactual actor-critic reinforcement learning on MSM with HOTEL
dataset.

improves the learning efficiency for an agent in the multi-
agent environment and make it more competitive.

VI. CONCLUSION

In the multi-agent environment, it is difficult to completely
recreate a historical moment for an environment since this
needs to replay all actions for the related agents in the same
order historically. Therefore, if an agent has choices at a spe-
cial moment in a multi-agent environment, it challenges a lot to
compute the accurate results for actions other than the practical
chosen one. In order to estimate the possible returns for those
non-chosen options, we propose the counterfactual thinking
multi-agent deep reinforcement learning model (CFT). This
model generates several intent actions which mimic the human
psychological process and then learns the regrets for the non-
chosen actions with its estimated Q-values at that moment
simultaneously. The estimated Q-values and policies of an
agent supervise each other during the training process to
generate more effective policies. Since this framework can
explore the policy subspace parallelly, CFT could converge to
the optimal faster than other existing methods. We test CFT
on standard multi-agent deep reinforcement learning platforms
and real-world problems. The results show that CFT signif-
icantly improves the competitive ability of a specific agent
by receiving more accumulative rewards than others in multi-
agent environments. This also verifies that the counterfactual

thinking mechanism is useful in training agent to solve the
multi-agent deep reinforcement learning problems.
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