
Multi-Modal Attention Network Learning for
Semantic Source Code Retrieval

Yao Wan*†], Jingdong Shu*†, Yulei Sui‡, Guandong Xu‡, Zhou Zhao†, Jian Wu† and Philip S. Yu†�
†College of Computer Science and Technology, Zhejiang University, Hangzhou, China

‡School of Computer Science, University of Technology Sydney, Australia
†Department of Computer Science, University of Illinois at Chicago, Illinois, USA

�Institute for Data Science, Tsinghua University, Beijing, China
]State Key Laboratory of Cognitive Intelligence, iFLYTEK, Hefei, China

{wanyao, jdshu, zhaozhou, wujian2000}@zju.edu.cn, {yulei.sui, guandong.xu}@uts.edu.au, psyu@uic.edu

Abstract—Code retrieval techniques and tools have been play-
ing a key role in facilitating software developers to retrieve
existing code fragments from available open-source repositories
given a user query (e.g., a short natural language text describing
the functionality for retrieving a particular code snippet). Despite
the existing efforts in improving the effectiveness of code retrieval,
there are still two main issues hindering them from being used
to accurately retrieve satisfiable code fragments from large-
scale repositories when answering complicated queries. First, the
existing approaches only consider shallow features of source code
such as method names and code tokens, but ignoring structured
features such as abstract syntax trees (ASTs) and control-flow
graphs (CFGs) of source code, which contains rich and well-
defined semantics of source code. Second, although the deep
learning-based approach performs well on the representation of
source code, it lacks the explainability, making it hard to interpret
the retrieval results and almost impossible to understand which
features of source code contribute more to the final results.

To tackle the two aforementioned issues, this paper proposes
MMAN, a novel Multi-Modal Attention Network for semantic
source code retrieval. A comprehensive multi-modal representa-
tion is developed for representing unstructured and structured
features of source code, with one LSTM for the sequential tokens
of code, a Tree-LSTM for the AST of code and a GGNN (Gated
Graph Neural Network) for the CFG of code. Furthermore, a
multi-modal attention fusion layer is applied to assign weights to
different parts of each modality of source code and then integrate
them into a single hybrid representation. Comprehensive experi-
ments and analysis on a large-scale real-world dataset show that
our proposed model can accurately retrieve code snippets and
outperforms the state-of-the-art methods.

Index Terms—Code retrieval, multi-modal network, attention
mechanism, deep learning.

I. INTRODUCTION

With the advent of immense source code repositories such
as GitHub [1] and StackOverflow [2], it is gradually becoming
a key software development activity for programmers to search
existing code with the same functionality, and reuse as much
of that code as possible [3]. The goal of code retrieval is
to retrieve a particular code fragment from available open-
source repositories given a user specification (e.g., a short text
describing the functionality of the code fragment). The key
challenges of implementing such a code retrieval system lie

*Equal contribution.

1. //	Verify whether	an	array	of	integers contains	an	even	number.
2. int check(struct list *head){
3. while(head){
4. if (head->data%2==0)
5. return 1;
6. head = head->next;}
7. return 0;}

(b)	Abstract	syntax	tree

(a)	Code	 snippet	and	description

Compound

While

head

0

Compound

BO

head

If

BO

2

BO

head

head 1

0

int check(struct list	*head)

while(head)

if	(head->data%2	
==	0)

return	0;

return	1;

return;

(c)	Control-flow	 graph

head=head->next;

Figure 1: A motivating example to better illustrate our motiva-
tion. (a) A code snippet and its corresponding description. (b)
The AST of the code snippet. (c) The control-flow graph of
the code snippet.

in two folds: (a) a deep semantic understanding of the source
code and (b) measuring the similarity of cross modalities (i.e.,
input natural language and source code).
Existing Efforts and Limitations. Many existing efforts have
been made towards searching the huge amount of available code
resources for a natural language query, ranging from keyword
matching [4], [5] to semantic retrieval [3], [6]. Lu et al., [4]
expanded a query with synonyms obtained from WordNet and
then performed keyword matching of method signatures. Lv
et al., [5] expanded the query with the APIs and considered
the impact of both text similarity and potential APIs on code
search. Reiss et al., [3] developed a code retrieval system

named Sourcerer, which learned the semantic representation of
source code through a probabilistic topic model. Inspired by
the success of deep learning in computer vision and natural
language processing tasks, deep learning has been applied to
better represent source code for tasks such as clone detection
[7] and code summarization [8].

To the best of our knowledge, Gu et. al., [6] is the first who
applied deep learning network to the task of code retrieval,
which captures the correlation between the semantic source
code and natural language query in an intermediate semantic
space. However, the approach still suffers from two major
limitations: (a) Deep structured features of source code are
often ignored. The approach [6] captures the shallow source
code information, including method name, code tokens and
API sequence, missing the opportunity to capture the rich
structure semantics of the code. (b) Lack of explainability.
The final results from a deep neural network is often hard to
interpret since its internal working is always transparent to
input data and different applications. This is also a common
issue when applying deep learning models. For example, in [6],
the code and its natural language descriptions are projected into
an intermediate semantic space and constrained by a ranking
loss function. Although the semantic representation of code is
learned, it is hard to infer which parts contribute more to the
final result.
Insights. These aforementioned limitations motivate us to de-
sign a model which learns a more comprehensive representation
on source code as well as with the ability of explainability. From
one hand, for limitation (a), apart from the tokens of code, we
also extract more features of code from its multiple views, such
as abstract syntax tree (AST) and control-flow graph (CFG) 1.
The AST and CFG are two types of intermediate code, one
of which represents the hierarchical syntactic structure of a
program, and the other represents the computation and control
flow of a program [9]. In this paper, we argue that aggregating
complementary information from multiple views of source code
can enrich its representation. In this paper, we use the term
view and modality interchangeably. We call the approach of
learning code representation from its multiple views/modalities
as multi-modal learning. To address the limitation (b), since
different modalities reflect different features of the source code.
Therefore, each modality may not contribute equally to the final
code representation. For a given modality, it consists of many
elements (tokens, nodes in AST/CFG), weights are assigned
to different elements via representation learning. Therefore,
we can infer which part contributes more to the final result
from the final representation, making explainability possible. In
this paper, we design an attention mechanism to integrate the
multi-modal features into a single hybrid code representation.
A Motivating Example. We give an example in Figure 1
to better illustrate our ideas. Figure 1(a) shows a simple
C code example, which aims to verify whether an array of
integers contains an even number. Figures 1(b) and (c) represent

1The tree structure can also be seen as a special instance of graph with no
circles and with each node having at most one parent node.

the corresponding AST and inter-procedural CFG of code
in Figure 1(a), respectively. From Figure 1(a), we can see
that the semantics of the highlighted three words Verify,
array, even can be precisely captured by different code
representations, e.g., plain text (for check), type-augmented
AST (for BinaryOperator) and CFG (for while). These
representations pay attention to different structure information
of the code at different views, e.g., each node on AST represents
a token and each node on CFG represents a statement. This
shows the necessity of considering various modalities to better
represent the source code. It is necessary to represent a code
from multiple views, especially from the structured information,
since the orders of tokens and statements on the two views can
be different depending on different code representations. For
example, based on plain text, the token after “while” in Figure
1 (a) is “()” and then followed by “head”. Differently, on
AST, there will be two possible tokens following “Compound”,
i.e., branch test “if”, “BinaryOperator”, as shown in
Figure 1 (b). Similarly, after the token “}” in the last statement
at line 6, there will be no token left based on plain text.
However, based on CFG, the next token is “while” at the
beginning of loop function based on CFG. From Figure 1, we
can also observe that there exists an alignment relationship
among the code snippet and it is description. For example, the
keyword Verify should be closely connected to the word
check in code. That means, on code retrieval, we can infer
which part of the retrieved code contributes most to the input
query words. This is very important to the model explainability.

Our Solution and Contributions. To tackle the two aforemen-
tioned issues, in this paper, we propose a novel model called
Multi-Modal Attention Network (MMAN) for semantic source
code retrieval. We not only consider the sequential features
which have been studied in previous works (i.e., method name
and tokens), but also the structure features (i.e., AST and
CFG extracted from code). We explore a novel multi-modal
neural network to effectively capture these multi-modal features
simultaneously. In particular, we employ a LSTM [10] to
represent the sequential tokens of code snippet, a Tree-LSTM
[11] network to represent the abstract syntax tree (AST) and a
gated graph neural network (GGNN) [12] to represent the CFG.
To overcome the explainability issue, we design an attention
mechanism to assign different weights to different parts of each
modality of source code, with the ability of explanation. To
summarize, the main contributions of this paper are as follows.

• We propose a more comprehensive multi-modal represen-
tation method for source code, with one LSTM for the
sequential content of source code, a Tree-LSTM for the
AST of source code and a GGNN for the CFG of source
code. Furthermore, a multi-modal fusion layer is applied
to integrate these three representations.

• To the best of our knowledge, it is the first time that we
propose an attention network to assign different weights to
different parts of each modality of source code, providing
an explainability of our deep multi-modal neural network
for representation.

• To verify the effectiveness of our proposed model, we
validate our proposed model on a real-world dataset
crawled from GitHub, which consists of 28; 527 C code
snippets. Comprehensive experiments and analysis show
the effectiveness of our proposed model when compared
with some state-of-the-art methods.

Organization. The remainder of this paper is organized as
follows. Section II highlights some works related to this paper.
In Section III, we provide some background knowledge on
multi-modal learning and attention mechanism. In Section IV,
we first give an overview our proposed framework and then
present each module of our proposed framework in detail.
Section V describes the dataset used in our experiment and
shows the experimental results and analysis. Section VI presents
a discussion on our proposed model, including the strength as
well as some threats to validity and limitations existing in our
model. Finally, we conclude this paper and give some future
research directions in Section VII.

II. RELATED WORK

In this section, we briefly review the related studies from
three perspectives, namely deep code representation, multi-
modal learning and attention mechanism.

A. Deep Code Representation

With the successful development of deep learning, it has
also become more and more prevalent for representing source
code in the domain of software engineering research. In
[13], Mou et al. learn distributed vector representations using
tree-structured convolutional neural network (Tree-CNN) to
represent snippets of code for program classification. Similarly,
Wan et al. [8] apply the tree-structured recurrent neural network
(Tree-LSTM) to represent the AST of source code for the
task of code summarization. Piech et al. [14] and Parisotto
et al. [15] learn distributed representations of source code
input/output pairs and use them to guide program synthesis
from examples. In [12], Li et al. represent heap state as a graph
and proposed a gated graph neural network to directly learn its
representation to mathematically describe the shape of the heap.
Maddison and Tarlow [16] and other neural language models
(e.g. LSTMs in Dam et al. [17]) describe context distributed
representations while sequentially generating code. Ling et
al. [18] and Allamanis et al. [19] combine the code-context
distributed representation with distributed representations of
other modalities (e.g., natural language) to synthesize code.

One limitation of the above mentioned approaches is that
these approaches ignore CFG of source code, which also
conveys rich semantic information. Furthermore, no unified net-
work is proposed to effectively fuse these multiple modalities.
To mitigate this issue, this papers resort to propose a multi-
modal network to learn a more comprehensive representation
of source code.

B. Multi-Modal Learning

One prevalent direction in multi-modal learning is on joint
representation which has been applied in many applications

such as image captioning [20], summarization [21], visual
questioning answering [22] and dialog system [23]. In [20],
Chen et al. propose an attentional hierarchical neural network
to summarize a text document and its accompanying images
simultaneously. In [21], Zhang et al. propose a multi-modal (i.e.,
image and long description of product) generative adversarial
network for product title refinement in mobile E-commerce.
In [22], Kim et al. propose a dual attention network to
capture a high-level abstraction of the full video content by
learning the latent variables of the video input, i.e., frames
and captions. Similarly, in [23], Hori et al. answer questions
about images using learned audio features, image features and
video description, for the audio visual scene-aware dialog.
Another direction in multi-modal learning is cross-modal
representation learning for information retrieval, which is
similar to our task. Cross-modal representation learning aims to
learn representation of each modality via project them into an
intermediate semantic space with a constraint. In [24], Carvalho
et al. propose a cross-modal retrieval model aligning visual
and textual data (like pictures of dishes and their recipes) in
a shared representation space for receipt retrieval. In [25] Ma
et al. propose a neural architecture for cross-modal retrieval,
which combines one CNN for image representation and one
CNN for calculating word-level, phrase-level and sentence-level
matching scores between an image and a sentence. [26], [27],
the authors learn hash functions that map images and text in
the original space into a Hamming space of binary codes, such
that the similarity between the objects in the original space is
preserved in the Hamming space.

In this paper, we draw the insights from multi-modal learning,
but not limit to it. We not only design a multi-modal neural
network to represent the code, but also apply an attention
mechanism to learn which part of code contributes more to
the final semantic representation.

C. Attention Mechanism

Attention mechanism has shown remarkable success in
many artificial intelligence domains such as neural machine
translation [28], image captioning [29], image classification
[30] and visual question answering [31]. Attention mechanisms
allow models to focus on necessary parts of visual or textual
inputs at each step of a task. Visual attention models selectively
pay attention to small regions in an image to extract core
features as well as reduce the amount of information to process.
A number of methods have recently adopted visual attention to
benefit image classification [32], [33], image generation [34],
image captioning [35], visual question answering [36]–[38],
etc. On the other hand, textual attention mechanisms generally
aim to find semantic or syntactic input-output alignments
under an encoder-decoder framework, which is especially
effective in handling long-term dependency. This approach has
been successfully applied to various tasks including machine
translation [28], text generation [39], sentence summarization
[8], [40], and question answering [41]. In [31], Lu et al. propose
a co-attention learning framework to alternately learn the
image attention and the question attention for visual question

answering. In [42], Nam et al. propose a multi-stage co-
attention learning framework to re�ne the attentions based on
memory of previous attentions. In [43], Paulus et al. combine
the inter- and intra-attention mechanism in a deep reinforcement
learng setting to improve the performance abstractive text
summarization. In [44], Zhang et al. introduce a self-attention
mechanism into convolutional generative adversarial networks.

To the best of our knowledge, no study has attempted to
learn multimodal attention models for the task of code retrieval.

III. PRELIMINARIES

In this section, we �rst mathematically formalize the code
retrieval problem using some basic notations and terminologies.
We then present some background knowledge of multi-modal
learning and attention mechanism.

A. Problem Formulation

To start with, we introduce some basic notations. Suppose
that we have a setD of N code snippets, with corresponding
descriptions, i.e.,D = f < x 1; d1 >; < x 2; d1 >; : : : ; <
xN ; dN > g. Each code snippet and description can be seen
as a sequence of tokens. Letx i = (x i 1; x i 2; : : : ; x i j x i j) be a
sequence of source code snippet,di = (di 1; dd2; : : : ; di j di j) be
a sequence of a description, wherej � j denotes the length of
a sequence. As we declared before, we represent the source
code from three modalities (i.e., tokens, AST and CFG). We
denote the semantic representation of code snippetx i as
x i = < x tok

i ; xast
i ; x cfg

i > , wherex tok
i , xast

i , x cfg
i denote the

representation for the three modalities, respectively.
Since the code snippet and its description are heterogeneous,

the goal of this paper is to train a model to learn their repre-
sentation in an intermediate semantic space, simultaneously.
Then, in the testing phase, the model can return a similarity
vector of each candidate code snippet for a given query.

B. Multi-Modal Learning

Multi-modal learning aims to build models that can process
and aggregate information from multiple modalities [45].
One important task of multi-modal learning is multi-modal
representation learning, which is roughly categorized as two
classes:joint andcoordinated. Joint representations combine
the unimodal signals into the same representation space, while
coordinated representations process unimodal signals separately,
but enforcing certain similarity constraints on them to bring
them to what we term an intermediate semantic space. We
introduce these two kinds of techniques in our problem setting.
Figure 2 illustrates the difference and connection between of
joint andcoordinatedrepresentations.

For code snippetx, we extract its multiple modalities such
as x tok , xast , x cfg . Since these modalities are complemen-
tary representation of a same code, we can apply the joint
representation, which is formularized as follows:

x = f
�
x tok ; xast ; x cfg �

; (1)

where the multimodal representationx is computed using
function f (e.g., a deep neural network) that relies on unimodal
representationsx tok ; xast ; x cfg .

Figure 2: The difference and connection betweenjoint and
coordinatedrepresentations (adapted from [45]).

While considering the code snippetx and descriptiond,
since these two modalities are from different sources, it is
desirable for us to apply coordinated representation for them
[6], which is de�ned as follows:

g1 (x) � g2 (d) ; (2)

where each modality has a corresponding projection function
(g1 andg2 above) that projects it into an intermediate semantic
space with a similarity constraint/coordination on them. Exam-
ples of such coordination include minimizing cosine distance,
or maximizing correlation. In this paper, the cosine similarity
function is adopted.

C. Attention Mechanism

Attention networks learn functions that provide a weighting
over inputs or internal features to steer the information visible
to other parts of a network. To some extent, it is biologically
motivated by the fact that our retina pays visual attention to
different regions of an image or correlate words in one sentence.
To date, many variants of attention mechanism have been
evolved. From another perspective, the attention mechanism
can be seen as the process of soft-addressing in a memory
unit. The source, composed of keyk and valuev , can be seen
as the content of memory. Given an input query, the goal of
attention mechanism is to return an attention value. Formally,
we can de�ne the attention value among query, key and value
as follows.

� (q; k) = softmax(g(q; k)) ; (3)

where q is the query andk is the key,g is the attention
score function which measures the similarity between query
and key. Usually, theg has many options, such as multi-layer
perceptron [28], dot product [46] and scaled dot product [47].
We call this kind of attention as inter-attention. However, there
exists a condition that the query is the key itself. In this
condition, we call it intra-attention (also well known as self-
attention) [48], [49], which exhibits a better balance between
ability to model long-range dependencies and computational
and statistical ef�ciency. After obtaining the attention score,
the �nal attended vector can be represented as the weighted
sum of each value in the memory:

v =
X

i

� i (q; k)v i ; (4)

wherev i is thei -th value in the memory. In this paper, we adopt
the inter-attention. Furthermore, the key is the hidden state of
token or node in AST/CFG, and the value is the corresponding
context vector (cf. Sec. IV-C).

IV. M ULTI -MODAL ATTENTION NETWORK

A. An Overview

Figure 3: The work�ow of MMAN.

In this section, we �rstly give an overall work�ow of how
to get a trained model for code retrieval. Then we present an
overview of the network architecture of our proposed MMAN
model.

Figure 3 shows the overall work�ow of how to get a trained
model, which consists of an of�ine training stage and an online
retrieval stage. In the training stage, we prepare a large-scale
corpus of annotated< code, description> pairs. The annotated
pairs are then fed into our proposed MMAN model for training.
After training, we can get a trained retrieval network. Then,
given a natural language query, related source code snippets
can be retrieved by the trained network.

Figure 4 is an overview of the network architecture of
our proposed MMAN model. We split the framework into
three submodules. (a) Multi-modal code representation (cf.
Sec.IV-B). This module is used to represent the source code
into a hidden space. (b) Multi-modal attention fusion (cf. Sec.
IV-C). This attention module is designed to assign different
weight on different parts for each modality, and then fuse the
attended vector into a single vector. (c) Model learning (cf. Sec.
IV-E). This attention module is designed to learn the comment
description representation and code representation in a common
space through a ranking loss function. We will elaborate each
component in this framework in the following sections.

B. Multi-Modal Code Representation

Different from previous methods that just utilize sequential
tokens to represent code, we also consider the structure
information of source code, in this section, we present a hybrid
embedding approach for code representation. We apply a LSTM
to represent the tokens of code, and a Tree-LSTM to represent
the AST of code a GGNN to represent the CFG of code.

1) Lexical Level - Tokens:The key insight into lexical level
representation of source code is that the comments are always
extracted from the lexical of code, such as the method name,
variable name and so on. In this paper, we apply LSTM network
to represent the sequential tokens.

h tok
i = LSTM

�
h tok

i � 1; w(x i)
�

; (5)

wherei = 1 ; : : : ; jxj, w is the word embedding layer to embed
each word into a vector. The �nal hidden stateh tok

jx j of the last
token of code is the token modality representation ofx.

2) Syntactic Level - AST:We represent the syntactic level
of source code from the aspect of AST embedding. Similar
to a traditional LSTM unit, we propose Tree-LSTM where
the LSTM unit also contains an input gate, a memory cell
and an output gate. However, different from a standard LSTM
unit which only has one forget gate for its previous unit, a
Tree-LSTM unit contains multiple forget gates. In particular,
considering a nodeN with the valuex i in its one-hot encoding
representation, and it has two childrenNL and NR , which
are its left child and right child, respectively. The Tree-LSTM
recursively computes the embedding forN from the bottom
up. Assume that the left child and the right child maintain
the LSTM state(hL ; cL) and(hR ; cR), respectively. Then the
LSTM state(h; c) of N is computed as

(hast
i ; cast

i) = LSTM
���

hast
iL ; hast

iR

�
;
�
cast

iL ; cast
iR

��
; w(x i)

�
;

(6)
where i = 1 ; : : : ; jxj and [�; �] denotes the concatenation of
two vectors. Note that a node may lack one or both of its
children. In this case, the encoder sets the LSTM state of the
missing child to zero. In this paper, we adopt the hidden state
of root node as the AST modality representation. It's worth
mentioning that when the tree is simply a chain, namelyN = 1 ,
the Tree-LSTM reduces to the vallina LSTM. Figure 5 shows
the structure of LSTM and Tree-LSTM.

3) Syntactic Level - CFG:As the CFG is a directed graph,
we apply a gated graph neural network (GGNN) to represent
the CFG, which is a neural network architecture developed for
graph. We �rst de�ne a graph asG = fV ; Eg, whereV is a
set of vertices(v; `v) and E is a set of edges(vi ; vj ; `e). `v

and`e are labels of vertex and edge, respectively. In our code
retrieval scenario, each vertex is the node of CFG, and each
edge represents the control-�ow of code, which has multiple
types. GGNN learns the graph representation directly through
the following procedures: First, we initialize the hidden state
for each vertexv 2 V ashcfg

v;0 = w(`v), wherew is the one-hot
embedding function. Then, for each roundt, each vertexv 2 V
receives the vectorm v;t +1 , which is the “message” aggregated
from its neighbours. The vectorm v;t +1 can be formulated as
follows:

m v;t +1 =
X

v02N (v)

W ` e hv0;t ; (7)

where N (v) are the neighbours of vertexv. For round t,
message from each neighbour is mapped into a shared space
via W ` e .

For each vertexv 2 V , the GGNN update its hidden state
with a forget gate. In this paper, we adopt the gated recurrent
unit (GRU) [50] to update the hidden state of each vertex,
which can be formulated as follows.

hcfg
v;t +1 = GRU(hcfg

v;t ; m v;t +1): (8)

Finally, with T rounds of iterations, we aggregate the hidden
states of all vertices via summation to obtain the embedded

Figure 4: The network architecture of our proposed MMAN model. We �rst extract the< code, description> pairs from training
corpus. We then parse the code snippets into tree modalities, i.e., tokens, AST, CFG. Then the training samples are fed into the
network as input. (a) Multi-modal code representation. We �rst learn the representation of each modality via LSTM, Tree-LSTM
and GGNN, respectively. (b) Multi-modal attention fusion. We design an attention layer to assign different weight on different
parts for each modality, and then fuse the attended vector into a single vector. (c) Model learning. We map the comment
description representation and code representation into an intermediate semantic common space and design a ranking loss
function to learn their similarities.

Figure 5: An illustratation of Tree-LSTM and LSTM.

Figure 6: An illustration of GGNN.

representation of the CFG. Figure 6 illustrates the structure of
GGNN.

C. Multi-Modal Attention Fusion

After we obtain the semantic representation of each modality,
we need to fuse them into a single representation. As we declare
before, for a unimodal, since it is composed of many elements,
it is desirable to assign different weights to each element.

Token Attention.For tokens, not all tokens contribute equally
to the �nal semantic representation of code snippet. Therefore,
we introduce the attention mechanism on tokens to extract
the ones that are more important to the representation of a
sequence of code tokens. The attention score for tokens� tok

is calculated as follows:

� tok
i =

exp(gtok (f tok (h tok
i); u tok))

P
j exp(gtok (f tok (h tok

j); u tok))
; (9)

whereh tok
i represents the hidden state ofi -th token in code.

f tok denotes a linear layer andgtok is the dot-product operator.
u tok is the context vector of token modality, which can be seen
as a high level representation of sequential tokens of code. The
word context vectoru tok is randomly initialized and jointly
learned during the training process.
AST Attention. For the AST, not all nodes contribute equally
to the �nal semantic representation of code snippet, indicating
that different construct occurring in the source code (e.g.,
if-condition-then) should also be considered distinctly.
Similar to Token attention, the attention score for AST nodes
� ast is calculated as follows:

� ast
i =

exp(gast (f ast (hast
i); uast))

P
j exp(gast (f ast (hast

j); uast))
; (10)

wherehast
i represents the hidden state ofi -th node in the AST.

f ast denotes a linear layer andgast is the dot-product operator.
uast is the context vector of AST modality, which can be seen
as a high level representation of AST nodes of code.
CFG Attention. For the CFG, different statement in the source
code should also be assigned different weight for the �nal

representation. Therefore, we assign each CFG nodes with the
weight � cfg as:

� cfg
i = sigmoid(gcfg (f cfg (hcfg

i); ucfg); (11)

wherehcfg
i represents the hidden state ofi -th node in the CFG.

f cfg denotes a linear layer andgcfg is the dot-product operator.
ucfg is the context vector of CFG modality, which can be seen
as a high level representation of CFG nodes of code. It's worth
mentioning that CFG attention weighted by sigmoid function
achieves better performance than that by softmax function from
the experimental results.
Multi-Modal Fusion. We then integrate the multi-modal rep-
resentation into a single representation via their corresponding
attention score. We �rst concatenate them and then feed them
into a one-layer liner network, which can be formularized as
follows.

x = W

"
X

i

� tok
i h tok

i ;
X

i

� ast
i hast

i ;
X

i

� cfg
i hcfg

i

#

; (12)

wherex is the �nal semantic representation of code snippet
x, [�; �] is the concatenation operation andW is the attention
weight for each modality.

D. Description Representation

In the training phase, the descriptions are extracted from the
code comments, while in the testing phase, the description are
regarded as the input queries. In this paper, we apply a vallina
LSTM to represent the description.

hdes
i = LSTM

�
hdes

i � 1; w(di)
�

; (13)

wherei = 1 ; : : : ; jdj and w is the word embedding layer to
embed each word into a vector. The hidden state of last step
hdes

jdj can be used as a vector representation ofd.

E. Model Learning

Now we present how to train the MMAN model to embed
both code and descriptions into an intermediate semantic space
with a similarity coordination. The basic assumption of this
joint representation is that if a code snippet and a description
have similar semantics, their embedded vectors should be close
to each other. In other words, given an arbitrary code snippet
x and an arbitrary descriptiond, we want it to predict a high
similarity if d is a correct description ofx, and a small similarity
otherwise. In training phase, we construct each training instance
as a triple< x; d + ; d� > : for each code snippetx, there is
a positive descriptiond+ (a correct description ofx) as well
as a negative description (an incorrect description ofx) d�

randomly chosen from the pool of alld+ 's. When trained
on the set of< x; d + ; d� > triples, the MMAN predicts the
cosine similarities of both< x; d + > and < x; d � > pairs
and minimizes the hinge range loss [6], [51]:

L (�) =
X

<x;d + ;d � > 2D

max(0; � � sim (x; d+) + sim(x; d �)) ;

(14)
where� denotes the model parameters,D denotes the training
dataset,sim denotes the similarity score between code and

description� is a small constant margin.x, d+ andd � are
the embedded vectors ofx, d+ and d� , respectively. In our
experiments, we adopt the cosin similarity function (cf.IV-F)
and set the �xed� value to0:05. Intuitively, the ranking loss
encourages the similarity between a code snippet and its correct
description to go up, and the similarities between a code snippet
and incorrect descriptions to go down.

F. Code Retrieval

After the model is trained, we can deploy it online for service.
Given a code baseX , for a given queryq, the target is to rank
all these code snippets by their similarities with queryq. We
�rst feed the code snippetx into the multi-model representation
module and feed the queryq as description into the LSTM
module to obtain their corresponding representations, denoted
asx andq. Then we calculate the ranking score as follows:

sim(x; q) = cos(x; q) =
xT q

kxkkqk
; (15)

wherex andq are the vectors of code and a query, respectively.
The higher the similarity, the more related the code is to the
given query.

V. EXPERIMENTS AND ANALYSIS

To evaluate our proposed approach, in this section, we
conduct experiments to answer the following questions:

� RQ1. Does our proposed approach improve the perfor-
mance of code retrieval when compared with some state-
of-the-art approaches?

� RQ2. What is the effectiveness and the contribution of
each modality of source code, e.g., sequential tokens, AST,
CFG of source code for the �nal retrieval performance,
and what about their combinations?

� RQ3. What is the performance of our proposed model
when varying the code length, code length, code AST node
number, code CFG node number and comment length?

� RQ4. What is the performance of our proposed atten-
tion mechanism? What is the explainability of attention
visualization?

We ask RQ1 to evaluate our deep learning-based model
compared to some state-of-the-art baselines, which will be
described in the following subsection. We ask RQ2 in order
to evaluate the performance of each modality extracted from
source code. We ask RQ3 to analyze the sensitivity of our
proposed model when varying the code length, code AST node
number, code CFG node number and comment length. We
ask RQ4 to verify the explainability of our proposed attention
mechanism. In the following subsections, we �rst describe
the dataset, some evaluation metrics and the training details.
Then, we introduce the baseline for RQ1. Finally, we report
our results and analysis for four research questions.

A. Dataset Collection

As described in Section IV, our proposed model requires a
large-scale training corpus that contains code snippets and their
corresponding descriptions. Following but different from [6],

(a) CFG node number. (b) Comment length.

Figure 7: The histogram of the dataset in our experiments.
(a) CFG node number distribution. (b) Comment length
distribution.

we evaluate the performance of our proposed model on a corpus
of C code snippets, collected from GitHub (a popular open
source projects hosting platform). Actually, we have considered
the dataset released by [6], while this dataset only contains the
cleaned Java snippets without the raw data, unable to generate
the CFG. Therefore, we resort to build a more complicated
language C dataset, which may also provide more challenges
and opportunities for our further research.

To construct the codebase, we crawl all the C language
repositories by its API2. We then exclude the repositories
whose stars number is smaller than 2. We select only the
methods that have documentation comments from the crawled
projects. Finally, we obtain a C corpus consisting of28; 527
commented C methods.

Figure 7 shows the length distributions of code and comment
on testing data. From Figure 7a, we can �nd that the lengths
of most code snippets are located between 20 to 40. This was
also observed in the quote in [52] “Functions should hardly
ever be 20 lines long”. From Figure 7b, we can notice that
the lengths of nearly all the comments are smaller than 10.
This also con�rms the challenge for capturing the correlation
between short text with its corresponding code snippet.

Having collected the corpus of commented code snippets, we
extract the multi-modal code features and it's corresponding de-
scription, i.e.,< method name, tokens, AST, CFG, description> ,
as follows:
Method Name Extraction. For each C method, we extract its
name and parse the name into a sequence of tokens according
to camel case, and if it contains_, we then tokenize it via_.
Token Extraction. To collect tokens from a C method, we
tokenize the code byf . , " ;) (! (space) g. After
we tokenize function body, function name, we limit their max
length as 100 and 50 respectively.
AST Extraction. To construct the tree-structure of code,
we parse C code into abstract syntax trees via an open
source tool named Clang (http://clang.llvm.org/).
For simpli�cation, we transform the generated ASTs to binary
trees by the following two steps which have been adopted in
[8]: a) split nodes with more than 2 children, generate a new

2We crawled the GitHub in Oct., 2016, so the repositories in our database
are created from August, 2008 to Oct., 2016.

right child together with the old left child as its children, and
then put all children except the leftmost as the children of this
new node. Repeat this operation in a top-down way until only
nodes with 0, 1, 2 children left; b) combine nodes with 1 child
with its child.
CFG Extraction. To construct the CFG of code, we �rst parse
C function into CFG via an open source tool named SVF [53]
(https://github.com/SVF-tools/SVF), which has
been widely used in value-�ow analysis [54], [55]. We then
remove nodes with same statement or no statement. For nodes
with same statement, we retain the nodes which occur in
the output of SVF �rst and remove their child nodes, and
link children of their child nodes to them. For nodes without
statement, we delete them and link their child nodes to their
parent nodes. We set maximum size of CFG nodes as512.
Description Extraction. To extract the documentation com-
ment, we extract description via the regular expression/ ** / .
We check the last sentence before every function and if it meets
the condition that we have de�ned via regular expression, then
we extract the description from the sentence.

We shuf�e the dataset and split it into two parts, namely
27,527 samples for training and 1,000 samples for evaluation.
It's worth mentioning a difference between our data processing
and the one in [6]. In [6], the proposed approach is veri�ed on
another isolated dataset to avoid the bias. Since the evaluation
dataset doesn't have the ground truth, they manually labeled the
searched results. We argue that this approach may introduce the
human bias. Therefore, in our paper, we resort to the automatic
evaluation.

B. Evaluation Metrics

For automatic evaluation, we adopt two common met-
rics to measure the effectiveness of code retrieval, i.e.,
SuccessRate @k and Mean Reciprocal Rank (MRR), both
of which have been widely used in the area of information
retrieval. To measure the relevance of our search results, we
use the success rate at rankk. The SuccessRate @k measures
the percentage of queries for which more than one correct
result could exist in the topk ranked results [6], [56], which
is calculated as follows:

SuccessRate @k =

1

jQj

QX

q=1

� (FRankq � k)

!

; (16)

whereQ is a set of queries,� (�) is a function which returns1
if the input is true and returns0 otherwise.SuccessRate @k
is important because a better code search engine should allow
developers to discover the needed code by inspecting fewer
returned results. The higher theSuccessRatevalue is, the
better the code search performance is.

We also use Mean Reciprocal Rank (MRR) to evaluate the
ranking of our search results. The MRR [5], [6] is the average
of the reciprocal ranks of results of a set of queriesQ. The

