
Improving Automatic Source Code Summarization via Deep
Reinforcement Learning

Yao Wan, Zhou Zhao
College of Computer Science and
Technology, Zhejiang University,

Hangzhou, China
{wanyao,zhaozhou}@zju.edu.cn

Min Yang
Shenzhen Institutes of Advanced
Technology, Chinese Academy of

Sciences, China
min.yang@siat.ac.cn

Guandong Xu
Advanced Analytics Institute,

University of Technology Sydney,
Sydney, Australia

guandong.xu@uts.edu.au

Haochao Ying, Jian Wu
College of Computer Science and
Technology, Zhejiang University,

Hangzhou, China
wujian2000@zju.edu.cn
haochaoying@zju.edu.cn

Philip S. Yu
University of Illinois at Chicago,

Illinois, USA
Institute for Data Science, Tsinghua

University, Beijing, China
psyu@uic.edu

ABSTRACT
Code summarization provides a high level natural language de-
scription of the function performed by code, as it can benefit the
software maintenance, code categorization and retrieval. To the
best of our knowledge, most state-of-the-art approaches follow an
encoder-decoder framework which encodes the code into a hidden
space and then decode it into natural language space, suffering from
two major drawbacks: a) Their encoders only consider the sequen-
tial content of code, ignoring the tree structure which is also critical
for the task of code summarization; b) Their decoders are typically
trained to predict the next word by maximizing the likelihood of
next ground-truth word with previous ground-truth word given.
However, it is expected to generate the entire sequence from scratch
at test time. This discrepancy can cause an exposure bias issue, mak-
ing the learnt decoder suboptimal. In this paper, we incorporate
an abstract syntax tree structure as well as sequential content of
code snippets into a deep reinforcement learning framework (i.e.,
actor-critic network). The actor network provides the confidence
of predicting the next word according to current state. On the other
hand, the critic network evaluates the reward value of all possible
extensions of the current state and can provide global guidance for
explorations. We employ an advantage reward composed of BLEU
metric to train both networks. Comprehensive experiments on a
real-world dataset show the effectiveness of our proposed model
when compared with some state-of-the-art methods.

CCS CONCEPTS
• Software and its engineering→Documentation; •Comput-
ing methodologies → Natural language generation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238206

KEYWORDS
Code summarization, comment generation, deep learning, rein-
forcement learning

ACM Reference Format:
Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu,
and Philip S. Yu. 2018. Improving Automatic Source Code Summarization
via Deep Reinforcement Learning. In Proceedings of the 2018 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE ’18), Sep-
tember 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3238147.3238206

1 INTRODUCTION
In the life cycle of software development (e.g., implementation, test-
ing and maintenance), nearly 90% of effort is used for maintenance,
and much of this effort is spent on understanding the maintenance
task and related software source codes [22]. Thus, documentation
which provides a high level description of the task performed by
code is always a must for software maintenance. Even though vari-
ous techniques have been developed to facilitate the programmer
during the implementation and testing of software, documenting
code with comments remains a labour-intensive task, making few
real-world software projects adequately document the code to re-
duce future maintenance costs [9, 16]. It’s nontrivial for a novice
programmer to write good comments for source codes. A good
comment should at least has the following characteristics: a) Cor-
rectness. The comments should correctly clarify the intent of code.
b) Fluency. The comments should be fluent natural languages that
can be easily read and understood by maintainers. c) Consistency.
The comments should follow a standard style/format for better
code reading. Code summarization is a task that tries to compre-
hend code and automatically generate descriptions directly from
the source code. The summarization of code can also be viewed as
a form of document expansion. Successful code summarization can
not only benefit the maintenance of source codes [15, 30], but also
be used to improve the performance of code search using natural
language queries [32, 51] and code categorization [31].
Motivation. Recent research has made inroads towards automatic
generation of natural language descriptions of software. As far as

https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206

ASE ’18, September 3–7, 2018, Montpellier, France Y. Wan et al.

FunctionDef

Argument Name

BinOp

Name

Name Name

Return
b

a b

a

Code	snippet
#	add	two	numbers
def add(a,	b):
return a+b

(a) An example of abstractive syntax tree (AST).

(a)	Training	process	of	maximum	likelihood-based	 text	generation.

Predicted

Ground	truth

Predicted

Missing	
ground	truth

(b)	Testing	process	of	maximum	likelihood-based	 text	generation.

…
Error	accumulate

…

…

(b) The limitation ofmaximum likelihood based text generation.

Figure 1: An illustration of the motivation of our paper. Traditional methods suffer from the following two limitations: a) On
representing the code, the structure information of code is always ignored. b) Traditionalmaximum likelihood basedmethods
suffer from the exposure bias issue.

we know,most of existing code summarizationmethods learn the se-
mantic representation of source codes based on statistical language
models [30, 33], and then generate comments based on templates
or rules [42]. With the development of deep learning, some neural
translation models [2, 13, 15] have also been introduced for code
summarization, which mainly follow an encoder-decoder frame-
work. They generally employ recurrent neural networks (RNN e.g.,
LSTM [14]) to encode the code snippets and utilize another RNN
to decode that hidden state to coherent sentences. These models
are typically trained to maximize the likelihood of the next word
on the assumption that previous words and ground-truth are given.
These models are limited from two aspects: a) The code sequential
and structural information is not fully utilized on feature repre-
sentation, which is critical for code understanding. For example,
given two simple expressions “f=a+b" and “f=c+d", although
they are quite different as two lexical sequences, they share the
same structure (e.g., abstractive syntax tree). b) These models, also
termed “teacher-forcing", suffer from the exposure bias since in
testing time the ground-truth is missing and previously generated
words from the trained model distribution are used to predict the
next word [37]. Figure 1(b) presents a simple illustration of the
discrepancy among training and testing process in these classical
encoder-decoder models. In the testing phase, this exposure bias
makes error accumulated and makes these models suboptimal, not
able to generate those words which are appropriate but with low
probability to be drawn in the training phase.
Contribution. In this paper, we aim to address these two men-
tioned issues. To effectively capture the structural (or syntactic)
information of code snippets, we employ abstract syntax tree (AST)
[7], a data structure widely used in compilers, to represent the struc-
ture of program code. Figure 1a shows an example of Python code
snippet and its corresponding AST. The root node is a composite
node of type FunctionDef, while the leaf nodes which are typed
as Name are tokens of code snippets. It’s worth mentioning that the
tokens from AST parsing may be different from those from word
segmentation. In our paper, we consider both of them. We parse
the code snippets into ASTs, and then propose an AST-based LSTM
model [46] to represent the structure of code. We also use another

LSTM model [14] to represent the sequential information of code.
Besides, we apply a hybrid attention layer to fuse the structure
representation and sequential representation of code on predicting
the word, considering the alignment between predicted word and
source word.

To overcome the exposure bias, we draw on the insights of deep
reinforcement learning, which integrates exploration and exploita-
tion into a whole framework. Instead of learning a sequential re-
current model to greedily look for the next correct word, we utilize
an actor network and a critic network to jointly determine the next
best word at each time step. The actor network, which provides the
confidence of predicting the next word according to current state,
serves as a local guidance. The critic network, which evaluates the
reward value of all possible extensions of the current state, serves as
a global guidance. Our framework is able to include the good words
that are with low probability to be drawn by using the actor net-
work alone. To learn these two networks more efficiently, we start
with pretraining an actor network using standard supervised learn-
ing with cross entropy loss, and pretraining a critic network with
mean square loss. Then, we update the actor and critic networks
according to the advantage reward composed of BLEU metric via
policy gradient. We summarize our main contributions as follows.

• We propose a more comprehensive representation method
for source code, with one AST-based LSTM for the structure
of source code, and another LSTM for the sequential con-
tent of source code. Furthermore, a hybrid attention layer is
applied to fuse these two representations.
• To the best of our knowledge, it is the first time that we pro-
pose an advanced deep reinforcement learning framework,
named actor-critic network, to cope with the exposure bias
issue existing in most traditional maximum likelihood-based
code summarization frameworks.
• We validate our proposed model on a real-world dataset of
108,726 Python code snippets. Comprehensive experiments
show the effectiveness of the proposed model when com-
pared with some state-of-the-art methods.

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ASE ’18, September 3–7, 2018, Montpellier, France

Organization. The remainder of this paper is organized as follows.
We provide some background knowledge on neural language model,
RNN encoder-decoder model and reinforcement learning in Section
2 for a better understanding of our proposed model. We also for-
mally define the problem in Section 2. Section 3 gives an overview
of our proposed framework. Section 4 presents a hybrid embedding
approach for code representation. Section 5 shows our proposed
deep reinforcement learning framework (i.e., actor-critic network).
Section 6 describes the dataset used in our experiment and shows
the experimental results and analysis. Section 7 shows some threats
to validity and limitations existing in our model. Section 8 high-
lights some works related to this paper. Finally, we conclude this
paper in Section 9.

2 BACKGROUND
As we declared before, the code summarization task can be seen
as a text generation task given the source code. In this section, we
first present some background knowledge on text generation which
will be used in this paper, including language model, attentional
RNN encoder-decoder model and reinforcement learning for better
decoding. To start with, we introduce some basic notations and
terminologies. Let x = (x1,x2, . . . ,x |x |) denote a sequence of source
code snippet, y = (y1,y2, . . . ,y |y |) denote a sequence of generated
words, where | · | denotes the length of sequence. Let T denote the
maximum step of decoding in the encoder-decoder framework. We
will often use notation ym ...l to refer to subsequences of the form
(ym , . . . ,yl). D = {(x1, y1), (x2, y2), . . . , (xN , yN)} is the training
dataset, where N is the size of training set.

2.1 Language Model
Language model computes the probability of occurrence of a num-
ber of words in a particular sequence. The probability of a sequence
ofT words {y1, . . . ,yT } is denoted as p (y1, . . . ,yT). Since the num-
ber of words coming before a word, yi , varies depending on its
location in the input document,p (y1, . . . ,yT) is usually conditioned
on a window of n previous words rather than all previous words:

p (y1:T) =
i=T∏
i=1

p (yi |y1:i−1) ≈
i=T∏
i=1

p (yi |yi−(n−1):i−1). (1)

This kind of n-grams approach suffers apparent limitations [27,
39]. For example, the n-gram model probabilities can not be derived
directly from the frequency counts, because models derived this
way have severe problems when confronted with some n-grams
that have not been explicitly seen before.

The neural language model is a language model based on neural
networks. Unlike the n-gram model which predicts a word based
on a fixed number of predecessor words, a neural language model
can predict a word by predecessor words with longer distances.
Figure 2(a) shows the basic structure of a RNN. The neural network
includes three layers, that is, an input layer which maps each word
to a vector, a recurrent hidden layer which recurrently computes
and updates a hidden state after reading each word, and an output
layer which estimates the probabilities of the following word given
the current hidden state. The RNN reads the words in the sentence
one by one, and predicts the possible following word at each time
step. At step t , it estimates the probability of the following word

y1

(a)	The	structure of	recurrent	neural	network	(RNN)

(b)	The	structure	of	tree-stuctured RNN	(Tree-RNN)

y2 y3 y4 y5

o1 o2 o3 o4 o5

o1 o2

o3o4

o5

y1 y2

y3y4

y5

Input

Hidden

Output

Figure 2: RNN and Tree-RNN (adapted from [46]).

p (yt+1 |y1:t) by the following steps: First, the current word yt is
mapped to a vector by the input layer e . Then, it generates the
hidden state ht at time t according to the previous hidden state
ht−1 and the current input yt :

ht = f (ht−1, e (yt)). (2)

Here, two common options for f are long short-term memory
(LSTM) [14] and the gated recurrent unit (GRU) [21]. Finally, the
p (yt+1 |y1:t) is predicted according to the current hidden state ht :

p (yt+1 |y1:t) = д(ht), (3)

where д is a stochastic output layer (typically a softmax for discrete
outputs) that generates output tokens.

2.2 Attentional RNN Encoder-Decoder Model
RNN encoder-decoder has two recurrent neural networks. The
encoder transforms the code snippet x into a sequence of hidden
states (h1, h2, . . . , h |x |) with a RNN, while the decoder uses another
RNN to generate one word yt+1 at a time in the target space.

2.2.1 Encoder. As a RNN, the encoder has a hidden state, which
is a fixed-length vector. At the time step t , the encoder computes
the hidden state ht by:

ht = f (ht−1, ct−1, e (xt))). (4)

Here, f is the hidden layer which has two main options, i.e.,
LSTM and GRU. The last symbol of x should be an end-of-sequence
(< eos >) symbol which notifies the encoder to stop and output the
final hidden state hT , which is used as a vector representation of x.

2.2.2 Decoder. The output of the decoder is the target sequence
y = (y1, · · · ,yT). One input of the decoder is a < start > symbol
denoting the beginning of the target sequence. At the time step
t , the decoder computes the hidden state ht and the conditional
distribution of the next symbol yt+1 by:

p (yt+1 |yt) = д(ht , ct), (5)

ASE ’18, September 3–7, 2018, Montpellier, France Y. Wan et al.

where д is a stochastic output layer and ct is the distinct context
vector for yt , computed by:

ct =
|x |∑
j=1

αt, jhj , (6)

where αt, j is the attention weight of yt on hj [4].

2.2.3 Training Goal. The encoder and decoder networks are
jointly trained to maximize the following objective:

max
θ
L (θ) = max

θ
E

(x,y)∼D
logp (y|x;θ), (7)

where θ is the set of the model parameters. We can see that this
classical encoder-decoder framework targets on maximizing the
likelihood of ground-truth word conditioned on previously gener-
ated words. As we have mentioned above, the maximum likelihood
based encoder-decoder framework suffers the exposure bias issue.
Motivated by this, we introduce the reinforcement learning tech-
nique for better decoding.

2.3 Reinforcement Learning for Better
Decoding

The reinforcement learning is an approach that interacts with the
real environment and learns the optimal policy from the reward
signal. It tries to generate text from scratch without ground truth in
the testing phase. Under this approach, the text generation process
can be viewed as a Markov Decision Process (MDP) {S,A, P ,R,γ }.
In the MDP setting, state st at time step t consists of the source code
snippets x and the words/actions predicted until t , y0,y1, . . . ,yt .
The action space is the dictionaryY that the words are drawn from,
i.e., yt ⊂ Y . With the definition of the state, the state transition
function P is st+1 = {st ,yt+1}, where the action yt+1 becomes a
part of the next state st+1 and the reward rt+1 is received. γ ∈ [0, 1]
is the discount factor. The objective of generation process is to find
a policy that maximizes the expected reward of generation sentence
sampled from the model’s policy:

max
θ
L (θ) = max

θ
E x∼D
ŷ∼Pθ (·|x)

[R (ŷ, x)], (8)

where θ is the parameter of policy needed to be learnt, D is the
training set, ŷ is the predicted actions/words, and R is the reward
function. Our problem can be formulated as follows.
Given a code snippet x = (x1,x2, . . . ,x |x |), our goal is to find a
policy that generates a sequence of words y = (y1,y2, . . . ,y |y |)
from dictionaryY with the objective of maximizing the expected
reward.
To learn the policy, many approaches have been proposed, which

are mainly categorized into two classes [44]. a) The policy-based
approaches (e.g., REINFORCE [50]) which optimizes the policy
directly via policy gradient. b) The value-based approaches (e.g.,
Q-learning [48]) which learns the Q-function, and in each time the
agent selects the action with highest Q-value. It has been verified
that the policy-based methods may suffer from a variance issue and
the value-based methods may suffer from a bias issue [17]. Thus
in our paper, we adopt the actor-critic learning method which is
a more advanced technique that has the advantage of both policy-
and value-based methods.

Actor Actor

Code	Snippet

CommentReward
Code	
corpus

Code	snippets

Comments

Training	
data

Deep	reinforcement	
learning

(a)	Offline	training (b)	Testing

Figure 3: An overall workflow of getting a trained model.

3 OVERVIEW OF PROPOSED FRAMEWORK
In this section, we firstly have a simple overview on the work-
flow of how to get a trained model for code summarization. Then
we present an overview of the network architecture of our pro-
posed deep reinforcement learning based model. Figure 3 shows
the overall workflow of how to get a trained model. It includes
an offline training stage and an online summarization stage. In
the training stage, we prepare a large-scale corpus of annotated
< code, comment > pairs. The annotated pairs are then fed into our
proposed deep reinforcement learning model for training. After
training, we can get a trained actor network. Then, given a code
snippet, corresponding comment can be generated by the trained
actor network.

Figure 4 is an overview of the network architecture of our pro-
posed deep reinforcement learning based model. The architecture
of our model follows the actor-critic framework [19], which has
been successfully adopted in the decision-making scenarios such
as AlphaGo [41]. We split the framework into four submodules.
(a) Hybrid code representation (cf. Sec. 4). This module is used to
represent the source code into a hidden space, which is also called
encoder in the encoder-decoder framework. (b) Hybrid attention
(cf. Sec. 5.1.1). On decoding the encoded hidden space into the com-
ment space, the attention layer is used to assign different weights
to the code snippet tokens for better generation. (c) Text generation
(cf. Sec. 5.1.2). This module is a RNN-based generative network,
which is used to generate the next word based on previous gener-
ated words. (d) Critic (cf. Sec. 5.2). This module is used to evaluate
whether the generated word is good or not.

Since the generated tokens on (d) can also been seen as actions,
we can also called the process (a)-(b)-(c) as actor network. Compared
with the architecture of traditional encoder-decoder framework, our
proposed model has an additional critic module used to evaluate the
value of action taken under current state. The process (a)-(b)-(c)-(d)
can also be called as critic network. We can see that the actor and
critic networks share the modules (a)-(b)-(c), reducing the number
of learning parameters a lot. We will elaborate each component in
this framework in the following sections.

4 HYBRID REPRESENTATION OF CODE
Different from previous methods that just utilize sequential tokens
to represent code, we also consider the structure information of
source code. In this section, we present a hybrid embedding ap-
proach for code representation. We apply an LSTM to represent

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ASE ’18, September 3–7, 2018, Montpellier, France

.

.

. .
.
.

Code
Snippet

(a) Hybrid code representation

hstr
1

hstr
2

hstr
n

hstr
root

↵str
i

AST

dstr
j

est

. . .

H
yb

rid . . .

Baseline Reward

(b) Hybrid attention

htxt
1 htxt

2 htxt
n

↵txt
i dtxt

j
gst+1 fsT

. . .yt yt+1 yT

MLP
V ⇡V ⇡

�

(c) Text generation

(d) CriticNotes:
Actor network: (a)-(b)-(c)
Critic network: (a)-(b)-(c)-(d)

Figure 4: An overview of our proposed deep reinforcement learning framework for code summarization.

the lexical level of code, and an AST-based LSTM to represent the
syntactic level of code.

4.1 Lexical Level
The key insight into lexical level representation of source code is
that comments are always extracted from the lexical of code, such
as the function name, variable name and so on. It’s apparent that we
apply an RNN (e.g., LSTM) to represent the sequential information
of source code. In our paper, the LSTM is adopted.

4.2 Syntactic Level
In executing a program, a compiler decomposes a program into con-
stituents and produces intermediate code according to the syntax of
the language. AST is one type of intermediate code that represents
the hierarchical syntactic structure of a program [1]. We represent
the syntactic level of source code from the aspect of AST embed-
ding. Similar to a traditional LSTM unit, we propose AST-based
LSTM where the LSTM unit also contains an input gate, a memory
cell and an output gate. Different from a standard LSTM unit which
only has one forget gate for its previous unit, an AST-based LSTM
unit contains multiple forget gates. Given an AST, for any node j,
let the hidden state and memory cell of its l-th child be hjl and c jl
respectively. Refer to [46], the hidden state is updated as follows:

ij = σ (W(i)xj +
N∑
l=1

U(i)
l hjl + b

(i)),

fjk = σ (W(f)xj +
N∑
l=1

U(f)
kl hjl + b

(f)),

oj = σ (W(o)xj +
N∑
l=1

U(o)
l hjl + b

(o)),

uj = tanh(W(u)xj +
N∑
l=1

U(u)
l hjl + b

(u)),

cj = ij ⊙ uj +
N∑
l=1

fjl ⊙ cjl ,

hj = oj ⊙ tanh(cj), (9)

where k = 1, 2, · · · ,N . Each of ij , fjk , oj and uj denotes an input
gate, a forget gate, an output gate, and a state for updating the
memory cell, respectively.W(·) and U(·) are weight matrices, b(·)
is a bias vector, and xj is the word embedding of the j-th node. σ (·)
is the logistic function, and the operator ⊙ denotes element-wise
multiplication between vectors. It’s worth mentioning that when
the tree is simply a chain, namely N = 1, the AST-based LSTM unit
reduces to the standard LSTM. Figure 2 shows the structure of RNN
and Tree-RNN.

Notice that the number of children N varies for different nodes
of different ASTs, which may cause problem in parameter-sharing.
For simplification, we transform the generated ASTs to binary trees
by the following two steps which have been adopted in [49]: a) Split
nodeswithmore than 2 children, generate a new right child together
with the old left child as its children, and then put all children except
the leftmost as the children of this new node. Repeat this operation
in a top-down way until only nodes with 0, 1, 2 children left; b)
Combine nodes with 1 child with its child.

5 DEEP REINFORCEMENT LEARNING FOR
CODE SUMMARIZATION

In this section, we introduce the advanced deep learning frame-
work named actor-critic network, which has been successfully used
in the AlphaGo [41]. We introduce the actor and critic network
respectively and then present how to train them simultaneously.

5.1 Actor Network
After obtaining the representation of code snippet, we need to de-
code it into comment. Here we describe how we generate comment
from the hidden space with a hybrid attention layer.

5.1.1 Hybrid Attention. Different parts of the code make dif-
ferent contributions to the final output of comment. We adopt
an attention mechanism [4] which has been successfully used in
neural machine translation. In the attention layer, we have two
attention scores, one αstrt (j) for structural representation and an-
other α txtt (j) for sequential representation of code. At t-th step of
the decoding process, the attention scores αstrt (j) and α txtt (j) are
calculated as follows:

ASE ’18, September 3–7, 2018, Montpellier, France Y. Wan et al.

αstrt (j) =
exp(hstrj · st)∑n
k=1 exp(h

str
k · st)

, α txtt (j) =
exp(htxtj · st)∑n
k=1 exp(h

txt
k · st)

,

(10)
where n is the number of code tokens; h(·)j · st is the inner project of

h(·)j and st , which is used to directly calculate the similarity score

between h(·)j and st . The t-th context vector d(·)t is calculated as

the summarization vector weighted by α (·)
t (j):

dstrt =

n∑
t=1

αstrt (j)hstrj , dtxtt =

n∑
t=1

α txtt (j)htxtj . (11)

To integrate the structural context vector and the textual vector,
we concatenate them firstly and then feed them into an one-layer
linear network:

dt =Wdt [d
str
t ; dtxtt] + bdt), (12)

where [dstrt ; dtxtt] is the concatenation of dstrt and dtxtt . The con-
text vector is then used for the (t +1)-th word prediction by putting
an additional hidden layer s̃t :

s̃t = tanh(Wc [st ; dt] + bd), (13)
where [st ; dt] is the concatenation of st and dt .

5.1.2 Text Generation. The model predicts the t-th word by
using a softmax function. Let pπ denote a policy π determined by
the actor network, pπ (yt |st) denote the probability distribution of
generating t-th word yt , we can get the following equation:

pπ (yt |st) = so f tmax (Ws s̃t + bs). (14)

5.2 Critic Network
Unlike traditional encoder-decoder framework that generates se-
quence directly via maximizing likelihood of next word given the
ground truth word, we directly optimize the evaluationmetrics such
as BLEU [34] for code summarization. We apply a critic network to
approximate the value of generated action at time step t . Different
from the actor network, this critic network outputs a single value
instead of a probability distribution on each decoding step. Before
introducing critic network, we introduce the value function.

Given the policy π , sampled actions and reward function, the
value function V π is defined as the prediction of total reward from
the state st at step t under policy π , which is formulated as follows:

V π (st) = Est+1:T ,
yt :T

T−t∑
l=0

rt+l |yt+1, · · · ,yT , h

, (15)

whereT is the max step of decoding; h is the representation of code
snippet. For code summarization, we can only obtain an evaluation
score (BLEU) when the sequence generation process (or episode) is
finished. The episode terminates when step exceeds the max-step
T or generating the end-of-sequence (EOS) token. Therefore, we
define the reward as follows:

rt =

{
0 t < T

BLEU t = T or EOS
. (16)

Mathematically, the critic network tries to minimize the follow-
ing loss function, where mean square error is used.

L (ϕ) =
1
2
V

π (st) −V π
ϕ (st)

2
, (17)

where V π (st) is the target value, V π
ϕ (st) is the value predicted by

critic network and ϕ is the parameter of critic network.

5.3 Model Training
We use the policy gradient method to optimize policy directly,
which is widely used in reinforcement learning. For actor network,
the goal of training is to minimize the negative expected reward,
which can be defined as L (θ) = −Ey1, . . .,T ∼π (

∑T
l=t rt), where θ

is the parameter of actor network. Denote all the parameters as
Θ = {θ ,ϕ}, the total loss of our model can be represented asL (Θ) =
L (θ) + L (ϕ).

For policy gradient, it is typically better to train an expression
of the following form according to [40]:

∇θL (Θ) = E[
T−1∑
t=0

Aπ (st ,yt+1)∇θ logπθ (yt+1 |st)], (18)

where Aπ (st ,yt+1) is advantage function. The reason why we
choose advantage function is that it achieves smaller variance when
compared with some other ones such as TD residual and reward
with baseline [40].

According to the definition of advantage function, we can for-
mulate the advantage function as follows. One can refer to [40] for
more details.

Aπ (st ,yt) = Qπ (st ,yt) −V π (st), (19)
whereQπ (st ,yt) is the state-action value function which is defined
asQπ (st ,yt) = Est+1:T ,

yt+1:T

[∑T−t
l=0 rt+l

]
. From this formulation, we can

find that the advantage functionmeasures whether or not the action
is better or worse than the policy’s default behavior. Therefore, a
step in the policy gradient direction can increase the probability of
better-than-average actions and decrease the probability of worse-
than-average actions.

On the other hand, the gradient of critic network is calculated
as follows:

∇ϕL (Θ) =
T−1∑
t=0

[V π (st) −V π
ϕ (st)]∇ϕV π

ϕ (st). (20)

We employ stochastic gradient descend with the diagonal variant
of AdaGrad [10] to optimize the parameters of our framework.
Algorithm 1 summarizes our proposed model described above.

6 EXPERIMENTS AND ANALYSIS
To evaluate our proposed approach, in this section, we conduct
experiments to answer the following questions:
• RQ1.Does our proposed approach improve the performance
of code summarization when compared with some state-of-
the-art approaches?
• RQ2. What’s the effectiveness of each component for our
proposed model? For example, what about the performance

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ASE ’18, September 3–7, 2018, Montpellier, France

Algorithm 1 Actor-Critic training for code summarization.

1: Initialize actor πyt+1|st and critic V π (st) with random weights
θ and ϕ;

2: Pre-train the actor to predict ground truth yt given
{y1, · · · ,yt−1} by minimizing Eq. 7;

3: Pre-train the critic to estimate V (st) with fixed actor;
4: for t = 1→ T do
5: Receive a random example, and generate sequence of actions

{y1, · · · ,yT } according to current policy πθ ;
6: Calculate advantage estimate Aπ according to Eq. 19;
7: Update critic weights ϕ using the gradient in Eq. 20;
8: Update actor weights θ using the gradient in Eq. 18.

of hybrid code representation and reinforcement learning
respectively?
• RQ3.What’s the performance of our proposed model on the
datasets with different code or comment length?

We ask RQ1 to evaluate our deep reinforcement learning-based
model compared to some state-of-the-art baselines. We ask RQ2
in order to evaluate each component of our model. We ask RQ3 to
evaluate our model when varying the length of code or comment.
In the following subsections, we first describe the dataset, some
evaluation metrics and the training details. Then, we introduce
some baselines for RQ1. Finally, we report our results and analysis
for the research questions.

6.1 Dataset Preparation
We evaluate the performance of our proposed method using the
dataset in [6], which is obtained from a popular open source projects
hosting platform, GitHub1. The dataset contains 108,726 code-
comment pairs. The vocabulary size of code and comment is 50,400
and 31,350, respectively. For cross-validation, We shuffle the dataset
and use the first 60% for training, 20% for validation and the remain-
ing for testing. To construct the tree-structure of code, we parse
Python code into abstract syntax trees via ast2 lib. To convert code
into sequential text, we tokenize the code by {. , " ’ : ;) (! (space)},
which has been used in [31]. We tokenize the comment by {(space)}.

Figure 5 shows the length distribution of code and comment on
testing data. From Figure 5a, we can find that the lengths of most
code snippets are located between 20 to 60. This verifies the quote
in [26] “Functions should hardly ever be 20 lines long". In Python
language, the limited length should be shorter. From Figure 5b, we
can notice that the length of nearly all the comments are between 5
to 15. This reveals the comment sequence that we need to generate
will not be too long.

6.2 Evaluation Metrics
We evaluate the performance of our proposed model based on
four widely-used evaluation criteria in the area of neural machine
translation and image captioning, i.e., BLEU [34], METEOR [5],
ROUGE-L [23] and CIDER [47]. BLEU measures the average n-
gram precision on a set of reference sentences, with a penalty for
short sentences. METEOR is recall-oriented and measures how
1https://github.com/
2https://docs.python.org/2/library/ast.html

0 20 40 60 80 100

Code length
0

250

500

750

1000

1250

1500

1750

2000

Co
un

t

(a) Code length distribution.

0 10 20 30 40 50

Code length
0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

t

(b) Comment length distribution.

Figure 5: Length distribution of testing data.

0 25 50 75 100 125 150
iteration

0

200

400

600

800

pe
rp
le
xi
ty

0 50 100 150 200 250 300 350
iteration

0

10

20

30

40

re
wa

rd

x50x50

Figure 6: Iteration of training perplexity and reward.

well our model captures content from the references in our output.
ROUGE-L takes into account sentence level structure similarity
naturally and identifies longest co-occurring in sequence n-grams
automatically. CIDER is a consensus based evaluation protocol for
image captioning.

6.3 Training Details
The hidden size of the encoder and decoder LSTM networks are
both set to be 512, and the word embedding size is set to be 512.
The mini-batch size is set to be 64, while the learning rate is set to
be 0.001. We pretrain both actor network and critic network with
10 epochs each, and train the actor-critic network simultaneously
10 epoches. We record the perplexity3/reward every 50 iterations.
Figure 6 shows the perplexity and reward curves of our method.
All the experiments in this paper are implemented with Python 2.7,
and run on a computer with an 2.2 GHz Intel Core i7 CPU, 64 GB
1600 MHz DDR3 RAM, and a Titan X GPU with 12 GB memory,
running Ubuntu 16.04.

6.4 RQ1: Compared to Baselines
We compare our model with the following baselines:
• Seq2Seq [43] is a classical encoder-decoder framework in
neural machine translation, which encodes the source sen-
tences into a hidden space, and decodes it into target sen-
tences. In our comparison, the encoder and decoder are both
based on LSTM.
• Seq2Seq+Attn [4] is a derived version of Seq2Seq model with
an attentional layer for word alignment.
• Tree2Seq [49] follows the same architecture with Seq2Seq
and applies AST-based LSTM as encoder for the task of code
clone detection.

3Perplexity is a function of cross entropy loss, which has beenwidely used in evaluation
of many natural language processing tasks.

ASE ’18, September 3–7, 2018, Montpellier, France Y. Wan et al.

Table 1: Comparison of the overall performance between our model and previous methods. (Best scores are in boldface.)

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDER
Seq2Seq 0.1660 0.0251 0.0100 0.0056 0.0535 0.2838 0.1262
Seq2Seq+Attn 0.1897 0.0419 0.0200 0.0133 0.0649 0.3083 0.2594
Tree2Seq 0.1649 0.0236 0.0096 0.0053 0.0501 0.2794 0.1168
Tree2Seq+Attn 0.1887 0.0417 0.0197 0.0129 0.0644 0.3068 0.2331
Hybrid2Seq+Attn+DRL (Our) 0.2527 0.1033 0.0640 0.0441 0.0929 0.3913 0.7501

Table 2: Effectiveness of each component for our proposed model. (Best scores are in boldface.)

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDER
Seq2Seq+Attn+DRL 0.2421 0.0919 0.0513 0.0325 0.0882 0.3935 0.6390
Tree2Seq+Attn+DRL 0.2309 0.0854 0.0499 0.0338 0.0843 0.3767 0.6060
Hybrid2Seq 0.1837 0.0379 0.0183 0.0122 0.0604 0.3020 0.2223
Hybrid2Seq+Attn 0.1965 0.0516 0.0280 0.0189 0.0693 0.3154 0.3475
Hybrid2Seq+Attn+DRL (Our) 0.2527 0.1033 0.0640 0.0441 0.0929 0.3913 0.7501

• Tree2Seq+Attn [11] is a derived version of Tree2Seq model
with an attentional layer, which has been applied in neural
machine translation
• Hybrid2Seq(+Attn+DRL) represents three versions of our
proposed model with/without Attn/DRL component.

Table 1 shows the experimental results of comparison between
our proposedmodel and some previous ones. From this table, we can
find that our proposed model outperforms other baselines in almost
all of evaluation metrics. When comparing Seq2Seq/Tree2Seq with
its correspond attention-based version, we can see that attention is
really effective in aligning the code tokens with comment tokens.
We can also find that the performance of simply encoding the tree
structure of code is worse than that of simply encoding the code as
sequence. This can be illustrated by that the words of comments
are always drawn from the tokens of code. Thus, our model which
considers both the structure and sequential information of code
achieves the best performance in this comparison.

6.5 RQ2: Component Analysis
Table 2 shows the effectiveness of some main components in our
proposed model. From this table, comparing the results of Seq2Seq+
Attn/Tree2Seq+Attn with and without (Table 1) deep reinforcement
learning (DRL), we can see that the proposed DRL component can
really boost the performance of comment generation for source
code. We can also find the proposed approach of integrating the
LSTM for content and AST-based LSTM for structure is effective
on representing the code as compared with the corresponding
non-hybrid ones in Table 1. Furthermore, it also verifies that our
proposed hybrid attention mechanism works well in our model.

6.6 RQ3: Parameter Analysis
We vary the length of code and comment since the code length may
have an effect on the representation of code and the comment length
may have an effect on the performance of text generation. Figure 7
and Figure 8 show the performance of our proposed method when
compared with two baselines on datasets of varying code lengths
and comment lengths, respectively.

From Figure 7, we can see that our model performs best when
compared with other baselines on four metrics with respect to
different code lengths. Additionally, we can see that the our pro-
posed model has a stable performance even though the code length
increases dramatically. We attribute this effect to the hybrid rep-
resentation we adopt in our model. For Figure 8, recall the com-
ment length distribution in Figure 5b. Since nearly all the comment
lengths of testing data are under 20, we ignore the performance
analysis over the samples whose comment length are larger than
20. From this figure, we can see the performances of our model
and baselines vary dramatically on four metrics with respect to
different comment lengths.

6.7 Qualitative Analysis and Visualization
We show two examples in Table 3. It’s clear that the generated
comments by our model are closest to the ground truth. Although
those models without DRL can generate some tokens which are
also in the ground truth, they can’t predict those tokens which
are not frequently appeared in the training data. On the contrary,
our deep reinforcement learning based model can generate some
tokens which are closer to the ground truth, like git, symbolic.
This can be illustrated by the fact that our model has a more com-
prehensive exploration on the word space and optimizes the BLEU
score directly.

In Table 3, we also visualize two attentions in our proposedmodel
for the target sentences. For example, for Case 1 with target sen-
tence check if git is installed ., we can notice that the str-attn (left
of figure) focuses more on tokens like OSError, False, git,
version, which represent the structure of code. On the other
hand, the attention of txt-attn (right of figure) is comparatively dis-
persed, and have a focus on some tokens like def, which is of little
significance for code summarization. This verifies our assumption
that LSTM can capture the sequential content of code, and AST-
based LSTM can capture the structure information of code. Thus,
it’s reasonable to fuse them together for a better representation.

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ASE ’18, September 3–7, 2018, Montpellier, France

0 10 20 30 40 50 60 70 80 90
Code length

0.15

0.20

0.25

0.30

0.35

B
LE

U

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(a) BLEU

0 10 20 30 40 50 60 70 80 90
Code length

0.06

0.08

0.10

0.12

0.14

M
E
T
E
O

R

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(b) METEOR

0 10 20 30 40 50 60 70 80 90
Code length

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

R
O

U
G

E
-L

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(c) ROUGE-L

0 10 20 30 40 50 60 70 80 90
Code length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
ID

E
R

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(d) CIDER

Figure 7: Experimental results of our proposed method and some baselines on different metrics w.r.t. varying code length.

0 5 10 15 20 25 30 35 40
Comment length

0.05

0.10

0.15

0.20

0.25

0.30

0.35

B
LE

U

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(a) BLEU

0 5 10 15 20 25 30 35 40
Comment length

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

M
E
T
E
O

R

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(b) METEOR

0 5 10 15 20 25 30 35 40
Comment length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
O

U
G

E
-L

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(c) ROUGE-L

0 5 10 15 20 25 30 35 40
Comment length

0.0

0.2

0.4

0.6

0.8

1.0

C
ID

E
R

Hybrid2Seq+Attn+DRL

Tree2Seq+Attn

Seq2Seq+Attn

(d) CIDER

Figure 8: Experimental results of our proposedmethod and some baselines on differentmetrics w.r.t. varying comment length.

7 THREATS TO VALIDITY AND LIMITATIONS
One threat to validity is that our approach is experimented only
on Python code collected from GitHub, so they may not be rep-
resentative of all the comments. However, Python is a popular
programming language used in a large number of projects. In the
future, we will extend our approach to other programming lan-
guages. Another threat to validity is on the metrics we choose for
evaluation. It has always been a tough challenge to evaluate the sim-
ilarity between two sentences for the tasks such as neural machine
translation [43], image captioning [18]. In this paper, we only adopt
four popular automatic metrics, it is necessary for us to evaluate
the performance of generated text from more perspectives, such as
human evaluation. Furthermore, in the deep reinforcement learn-
ing perspective, we only set the BLEU score of generated sentence
as the reward. It’s well known that for a reinforcement learning
method, one of the biggest challenge is how to design a reward
function to measure the value of action correctly, and it is still
an open problem. In our future work, we plan to devise a reward
function that can reflect the value of each action more correctly.

8 RELATEDWORK
8.1 Deep Code Representation
With the successful development of deep learning, it has also be-
come more and more prevalent for representing source code in
the domain of software engineering research. Gu et al. [12] use a
sequence-to-sequence deep neural network [43], originally intro-
duced for statistical machine translation, to learn intermediate dis-
tributed vector representations of natural language queries which
they use to predict relevant API sequences. Mou et al. [29] learn
distributed vector representations using custom convolutional neu-
ral networks to represent features of snippets of code, then they
assume that student solutions to various coursework problems

have been intermixed and seek to recover the solution-to-problem
mapping via classification. Li et al. [21] learn distributed vector rep-
resentations for the nodes of a memory heap and use the learned
representations to synthesize candidate formal specifications for
the code that produces the heap. Piech et al. [36] and Parisotto et al.
[35] learn distributed representations of source code input/output
pairs and use them to assess and review student assignments or to
guide program synthesis from examples. Neural code-generative
models of code also use distributed representations to capture con-
text, which is a common practice in natural language processing.
For example, the work of Maddison and Tarlow [25] and other
neural language models (e.g. LSTMs in Dam et al. [8]) describe con-
text distributed representations while sequentially generating code.
Ling et al. [24] and Allamanis et al. [3] combine the code-context
distributed representation with distributed representations of other
modalities (e.g. natural language) to synthesize code.

8.2 Source Code Summarization
Code summarization is a novel task in the area of software engi-
neering and has drawn great attention in recent years. The existing
works for code summarization can be mainly categorized as rule
based approaches [42], statistical language model based approaches
[30] and deep learning based approaches [2, 13, 15]. Sridhara et
al. [42] construct a software word usage model first, and generate
comment according to the tokenized function/variable names via
rules. Movshovitz-Attias et al. [30] predict comments from Java
source files using topic models and n-grams. In [2], the authors
introduce an attentional neural network that employs convolution
on the input tokens to detect local time-invariant and long-range
topical attention features to summarize source code snippets into
short, descriptive function name-like summaries. Iyer et al. [15]
propose to use LSTM networks with attention to produce sentences

ASE ’18, September 3–7, 2018, Montpellier, France Y. Wan et al.

Table 3: Examples of code summarization generated by each model and attention visualization of our model.

Case 1 Case 2

Code snippet

def _has_git():
try: subprocess.check_call(
[git, -version],
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL)

except(OSError, subprocess
.CalledProcessError):
return False
else: return True

def tensor3(name=None,dtype=None):
if (dtype is None):
dtype=config.floatX
type=CudaNdarrayType(

dtype=dtype,
broadcastable=
(False, False, False))

return type(name)

Ground truth check if git is installed . return a symbolic 3-d variable .

Seq2Seq helper function to create a new figure
manager instance . yaml

Seq2Seq+Attn return true if the user has access to the
specified resource .

a decorator that returns a new class that will return
a new class name .

Tree2Seq+Attn test that validate_folders throws a
foldermissingerror . helper function for #4957 .

Hybrid2Seq+Attn returns the number of git modules that are
not installed . return the path to the currently running server .

Hybrid2Seq+Attn+DRL returns true if git is installed . return a symbolic graph .

Attention visualization

d
e
f

su
b
p
ro
ce
ss

su
b
p
ro
ce
ss

O
S
E
rr
o
r

F
a
ls
e

'g
it
'

'-
-v
e
rs
io
n
'

su
b
p
ro
ce
ss

T
ru
e

<
E
O
S
>

check
if

git
is

installed
.

<EOS>

d
e
f

<
u
n
k
>

tr
y

su
b
p
ro
ce
ss

ch
e
ck
_c
a
ll

['
g
it
'

'-
-v
e
rs
io
n
']

st
d
o
u
t

su
b
p
ro
ce
ss

D
E
V
N
U
LL

st
d
e
rr

su
b
p
ro
ce
ss

D
E
V
N
U
LL

e
x
ce
p
t

O
S
E
rr
o
r

su
b
p
ro
ce
ss

C
a
lle
d
P
ro
ce
ss
E
rr
o
r

re
tu
rn

<
u
n
k
>

re
tu
rn

<
E
O
S
>

0.0

0.5

1.0 N
o
n
e

N
o
n
e

co
n
fi
g

F
a
ls
e

F
a
ls
e

ty
p
e

n
a
m
e

d
ty
p
e

F
a
ls
e

C
u
d
a
N
d
a
rr
a
y
T
y
p
e

d
ty
p
e

ty
p
e

d
ty
p
e

n
a
m
e

d
ty
p
e

<
E
O
S
>

return
a

symbolic
3-d

variable
.

<EOS>

d
e
f

<
u
n
k
>

n
a
m
e

N
o
n
e

d
ty
p
e

N
o
n
e

if d
ty
p
e

is N
o
n
e

d
ty
p
e

co
n
fi
g

<
u
n
k
>

C
u
d
a
N
d
a
rr
a
y
T
y
p
e

d
ty
p
e

d
ty
p
e

b
ro
a
d
ca
st
a
b
le

F
a
ls
e

F
a
ls
e

F
a
ls
e

re
tu
rn

ty
p
e

n
a
m
e

0.0

0.5

1.0

that describe C# code snippets and SQL queries. In Haije’s thesis
[13], the code summarization problem is modeled as a machine
translation task, and some translation models such as Seq2Seq [43]
and Seq2Seq with attention [4] are employed. Unlike previous stud-
ies, we take the tree structure and sequential content of source code
into consideration for a better representation of code.

8.3 Deep Reinforcement Learning
Reinforcement learning [19, 45, 50], concerned with how software
agents ought to take actions in an environment so as to maxi-
mize the cumulative reward, is well suited for the task of decision-
making. Recently, professional-level computer Go program has
been designed by Silver et al. [41] using deep neural networks
and Monte Carlo Tree Search. Human-level gaming control [28]
has been achieved through deep Q-learning. A visual navigation
system [53] has been proposed recently based on actor-critic re-
inforcement learning model. Text generation can also be formu-
lated as a decision-making problem and there have been several
reinforcement learning-based works on this specific tasks, includ-
ing image captioning [38], dialogue generation [20] and sentence
simplification [52]. Ren et al. [38] propose an actor-critic deep re-
inforcement learning model with an embedding reward for image
captioning. Li et al. [20] integrate a developer-defined reward with
REINFORCE algorithm for dialogue generation. In this paper, we
follow an actor-critic reinforcement learning framework, while our

focus is on encoding the structural and sequential information of
code snippets simultaneously with an attention mechanism.

9 CONCLUSION
In this paper, we first point out two issues (i.e., code representa-
tion and exposure bias) existing in traditional code summarization
works. To handle these two issues, we first encode the structure
and sequential content of code via AST-based LSTM and LSTM
respectively. Then we add a hybrid attention layer to integrate
them together. We then feed the code representation vector into
a deep reinforcement learning framework, named actor-critic net-
work. Comprehensive experiments on a real-world dataset show
that our proposed model outperforms other competitive baselines
and achieves state-of-the-art performance on several automatic
metrics, namely BLEU, METEOR, ROUGE-L and CIDER.

ACKNOWLEDGMENTS
This work is partially supported by the Ministry of Education of
China under grant of No.2017PT18, the Natural Science Foundation
of China under grant of No. 61672453, 61773361, 61473273, 61602405,
the WE-DOCTOR company under grant of No. 124000-11110 and
the Zhejiang University Education Foundation under grant of No.
K17-511120-017. This work is also supported by CCF-Tencent Open
Research Fund, NSF through grants IIS-1526499, IIS-1763325, CNS-
1626432, and NSFC 61672313.

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] A. V Aho, R. Sethi, and J. D Ullman. 1986. Compilers, Principles, Techniques.

Addison Wesley 7, 8 (1986), 9.
[2] M. Allamanis, H. Peng, and C. Sutton. 2016. A convolutional attention network

for extreme summarization of source code. In International Conference on Machine
Learning. 2091–2100.

[3] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei. 2015. Bimodal modelling
of source code and natural language. In International Conference on Machine
Learning. 2123–2132.

[4] D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).

[5] S. Banerjee and A. Lavie. 2005. METEOR: An automatic metric for MT evaluation
with improved correlation with human judgments. In Proceedings of the acl
workshop on intrinsic and extrinsic evaluation measures for machine translation
and/or summarization, Vol. 29. 65–72.

[6] A. V. M. Barone and R. Sennrich. 2017. A parallel corpus of Python functions and
documentation strings for automated code documentation and code generation.
arXiv preprint arXiv:1707.02275 (2017).

[7] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone de-
tection using abstract syntax trees. In Software Maintenance, 1998. Proceedings.,
International Conference on. IEEE, 368–377.

[8] H. K. Dam, T. Tran, and T. Pham. 2016. A deep language model for software code.
arXiv preprint arXiv:1608.02715 (2016).

[9] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. 2005. A study of the
documentation essential to software maintenance. In Proceedings of the 23rd
annual international conference on Design of communication: documenting &
designing for pervasive information. ACM, 68–75.

[10] J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research 12,
Jul (2011), 2121–2159.

[11] A. Eriguchi, K. Hashimoto, and Y. Tsuruoka. 2016. Tree-to-sequence attentional
neural machine translation. arXiv preprint arXiv:1603.06075 (2016).

[12] X. Gu, H. Zhang, D. Zhang, and S. Kim. 2016. Deep API learning. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 631–642.

[13] T. Haije, B. O. K. Intelligentie, E. Gavves, and H. Heuer. 2016. Automatic Comment
Generation using a Neural Translation Model. (2016).

[14] S. Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[15] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. 2016. Summarizing Source
Code using a Neural Attention Model.. In ACL (1).

[16] Mira Kajko-Mattsson. 2005. A survey of documentation practice within corrective
maintenance. Empirical Software Engineering 10, 1 (2005), 31–55.

[17] Y. Keneshloo, T. Shi, C. K Reddy, and N. Ramakrishnan. 2018. Deep Reinforcement
Learning For Sequence to Sequence Models. arXiv preprint arXiv:1805.09461
(2018).

[18] M. Kilickaya, A. Erdem, N. Ikizler-Cinbis, and E. Erdem. 2016. Re-evaluating
automatic metrics for image captioning. arXiv preprint arXiv:1612.07600 (2016).

[19] V. R. Konda and J. N. Tsitsiklis. 2000. Actor-critic algorithms. In Advances in
neural information processing systems. 1008–1014.

[20] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky. 2016. Deep re-
inforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541
(2016).

[21] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. 2015. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493 (2015).

[22] B. P. Lientz and E. B. Swanson. 1980. Software maintenance management. (1980).
[23] C. Y. Lin. 2004. Rouge: A package for automatic evaluation of summaries. Text

Summarization Branches Out (2004).
[24] W. Ling, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, A. Senior, F. Wang, and P.

Blunsom. 2016. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744 (2016).

[25] C. Maddison and D. Tarlow. 2014. Structured generative models of natural source
code. In International Conference on Machine Learning. 649–657.

[26] R. C Martin. 2009. Clean code: a handbook of agile software craftsmanship. Pearson
Education.

[27] A. Mnih and Y. W. Teh. 2012. A fast and simple algorithm for training neural
probabilistic language models. arXiv preprint arXiv:1206.6426 (2012).

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[29] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. 2016. Convolutional Neural Networks
over Tree Structures for Programming Language Processing.. In AAAI, Vol. 2. 4.

[30] D. Movshovitz-Attias and W. W. Cohen. 2013. Natural language models for
predicting programming comments. (2013).

[31] A. T. Nguyen and T. N. Nguyen. 2017. Automatic categorization with deep neural
network for open-source Java projects. In Proceedings of the 39th International
Conference on Software Engineering Companion. IEEE Press, 164–166.

[32] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li. 2016. Query expansion based on crowd
knowledge for code search. IEEE Transactions on Services Computing 9, 5 (2016),
771–783.

[33] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Nakamura. 2015.
Learning to generate pseudo-code from source code using statistical machine
translation (t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, 574–584.

[34] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. 2002. BLEU: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th annual meeting
on association for computational linguistics. Association for Computational Lin-
guistics, 311–318.

[35] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli. 2016. Neuro-
symbolic program synthesis. arXiv preprint arXiv:1611.01855 (2016).

[36] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and L. Guibas.
2015. Learning program embeddings to propagate feedback on student code.
arXiv preprint arXiv:1505.05969 (2015).

[37] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. 2015. Sequence level training
with recurrent neural networks. arXiv preprint arXiv:1511.06732 (2015).

[38] Z. Ren, X. Wang, N. Zhang, X. Lv, and L. J. Li. 2017. Deep Reinforcement Learning-
Based Image Captioning with Embedding Reward. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on. IEEE, 1151–1159.

[39] R. Rosenfeld. 2000. Two decades of statistical language modeling: Where do we
go from here? Proc. IEEE 88, 8 (2000), 1270–1278.

[40] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. 2015. High-
dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438 (2015).

[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and S. Dieleman.
2016. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 7587 (2016), 484–489.

[42] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker. 2010. To-
wards automatically generating summary comments for java methods. In Proceed-
ings of the IEEE/ACM international conference on Automated software engineering.
ACM, 43–52.

[43] I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems. 3104–
3112.

[44] R. S Sutton and A. G Barto. 1998. Introduction to reinforcement learning. Vol. 135.
MIT press Cambridge.

[45] R. S Sutton, D. A McAllester, S. P Singh, and Y. Mansour. 2000. Policy gradient
methods for reinforcement learning with function approximation. In Advances
in neural information processing systems. 1057–1063.

[46] K. S. Tai, R. Socher, and C. D. Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory networks. arXiv preprint
arXiv:1503.00075 (2015).

[47] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. 2015. Cider: Consensus-based
image description evaluation. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4566–4575.

[48] C. J. Watkins and P. Dayan. 1992. Q-learning. Machine learning 8, 3-4 (1992),
279–292.

[49] H. H. Wei and M. Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. (2017).

[50] R. J Williams. 1992. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. In Reinforcement Learning. Springer, 5–32.

[51] D. Yang, A. Hussain, and C. V. Lopes. 2016. From query to usable code: An
analysis of stack overflow code snippets. In Mining Software Repositories (MSR),
2016 IEEE/ACM 13th Working Conference on. IEEE, 391–401.

[52] X. Zhang and M. Lapata. 2017. Sentence Simplification with Deep Reinforcement
Learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. 584–594.

[53] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A Gupta, L. Fei-Fei, and A. Farhadi.
2017. Target-driven visual navigation in indoor scenes using deep reinforcement
learning. In Robotics and Automation (ICRA), 2017 IEEE International Conference
on. IEEE, 3357–3364.

	Abstract
	1 Introduction
	2 Background
	2.1 Language Model
	2.2 Attentional RNN Encoder-Decoder Model
	2.3 Reinforcement Learning for Better Decoding

	3 Overview of Proposed Framework
	4 Hybrid Representation of Code
	4.1 Lexical Level
	4.2 Syntactic Level

	5 Deep Reinforcement Learning for Code Summarization
	5.1 Actor Network
	5.2 Critic Network
	5.3 Model Training

	6 Experiments and Analysis
	6.1 Dataset Preparation
	6.2 Evaluation Metrics
	6.3 Training Details
	6.4 RQ1: Compared to Baselines
	6.5 RQ2: Component Analysis
	6.6 RQ3: Parameter Analysis
	6.7 Qualitative Analysis and Visualization

	7 Threats to Validity and Limitations
	8 Related Work
	8.1 Deep Code Representation
	8.2 Source Code Summarization
	8.3 Deep Reinforcement Learning

	9 Conclusion
	References

